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Abstract—Existing solutions for scheduling arbitrarily complex
distributed applications on networks of computational nodes
are insufficient for scenarios where the network topology is
changing rapidly. New Internet of Things (IoT) domains like the
Internet of Robotic Things (IoRT) and the Internet of Battlefield
Things (IoBT) demand solutions that are robust and efficient in
environments that experience constant and/or rapid change. In
this paper, we demonstrate how recent advancements in machine
learning (in particular, in graph convolutional neural networks)
can be leveraged to solve the task scheduling problem with decent
performance and in much less time than traditional algorithms.

Index Terms—GCN, Graph Convolutional Network, Schedul-
ing, Internet of Things, Robotics

I. INTRODUCTION

The Internet of Battlefield Things (IoBT) is a subdomain
of IoT which considers connected devices (sensors, actua-
tors, compute-nodes, etc.) that support critical military op-
erations [15]. Common assumptions about network connec-
tivity, node reliability, and environmental conditions that are
acceptable for civilian IoT applications are unacceptable in
high-stakes battlefield environments. Motivated by the IoBT
domain, we study the problem of scheduling arbitrarily com-
plex distributed applications over resource-constrained mobile
patrol robots. The mobility of the patrolling network nodes
results in dynamic communication conditions and demands
careful attention to the compute resources available. We con-
sider distributed applications which are modeled as directed
acyclic task graphs. Each node in a task graph represents a
compute task and edges between tasks represent a dependency
relationship (i.e., one task cannot start until its dependencies
have terminated).

The purpose of a scheduler is to determine where and when
tasks should execute in order to minimize some metric like
makespan (total execution time). Efficient schedulers must
balance the cost and benefit of sending tasks to execute in
parallel on different compute nodes. On one hand, sending a
task and its input data to execute on another node takes time
while on the other, executing two tasks in parallel saves time.
For this paper, we constructed a task graph that resembles
many real-world applications and is a good demonstration of
this trade-off (Figure2).

Fig. 1. An overview of our approach: Task graphs are augmented with
node and edge feature vectors that encode data from the network profile.
GCNScheduler learns to imitate a teacher algorithm and assign tasks to
network nodes.

Deploying complex distributed applications over a network
of mobile compute nodes is challenging when the network
experiences constant and/or rapid change. A schedule that
minimizes makespan for the network at a particular time may
not be optimal (or anywhere near optimal) for the network
at a future time. Existing scheduling algorithms that leverage
the entire network state suffer with respect to complexity
as the number of tasks and/or network nodes increase. In
order to adapt to the rapid dynamics of the IoBT domain, a
scheduling algorithm needs to be capable of computing and re-
computing complex schedules quickly. More efficient online
algorithms that only consider partial network information (i.e.
neighborhood information) have been proposed [4], [7], [24].
These algorithms produce schedules quickly and dynamically
but often result in larger makespans since they do not leverage
all the information available about a network.



Contribution: In this paper, we demonstrate how recent
advancements in artificial intelligence can be applied to solve
practical problems in the Internet of Robotic Things domain.
We demonstrate through simulation that Graph Convolutional
Networks can learn to produce schedules with low makespans
quickly, making it suitable for IoBT applications.

II. RELATED WORK

Efficient task scheduling is a well-researched area and
finding an optimal schedule is generally NP-hard [23]. Some
approaches seek to optimize directly via convex program-
ming [3] or semidefinite programming [18]. Other approaches
rely on heuristics like priority-based scheduling [19] or load
balancing [12]. One of the most popular scheduling algo-
rithms is Heterogeneous Earliest-Finish-Time (HEFT) [22].
Online and distributed scheduling algorithms have also been
proposed [4], [7], [24]. More recently, metaheuristic-based
approaches like simulated annealing [1] and genetic algo-
rithms [8], [17] have been proposed. The primary disadvantage
of existing approaches is that scheduling time grows quickly
with the size and complexity of the network and application.

Task scheduling on IoT systems has unique challenges:
nodes tend to be more severely compute constrained, given
their size, and more severely communication constrained,
given their wireless nature. Recent work on scheduling per-
ception tasks over an IoT network focuses on how to pri-
oritize tasks based on criticality [13], or optimize makespan
using particle swarm optimization [6]. For IoBT settings,
highly-volatile network dynamics impose the need for quick
schedule computation. Learning-based algorithms can reduce
computation times to address this challenge, for example by
training a scheduling algorithm to minimize makespan [14],
[20]. Despite this, a recent survey of scheduling algorithms for
IoT indicates that most work is concerned with static schedules
and only a few rely on learning [2].

To effectively exploit the relational information of graph-
structured data, graph neural networks (GNNs) have recently
become a popular method for approaching optimization prob-
lems in wireless networks [14]. In our previous work, we
explored GNNs as a method for developing task scheduling
algorithms for wireless networks [11], focusing on static
networks and scalability. In this work, we focus on dynamic
networks with more realistic simulations of inter-node com-
munication and specifically address the feasibility of GNNs
for task scheduling in the IoBT domain.

III. PROBLEM FORMULATION

Consider a system of compute-capable mobile robots, each
of which is moving with equal speed and in the same direction
along the perimeter of an arbitrary simple polygon in two-
dimensional space, and a distributed application that can be
modeled as a directed acyclic graph (DAG) of tasks G =
(V,E) where each v ∈ V represents a computational task and
each (u, v) ∈ E represents a dependency between tasks u and
v (one or more outputs of task u are necessary inputs to task v).
We denote the computational cost of a task v ∈ V as cost(v)

and the size of the data-dependency between u and v for some
(u, v) ∈ E as data(u, v). While the trajectories of the robots
may have nothing to do with the distributed application, they
do have a direct impact on the communication ability of the
mobile robots in the network. Since robots are moving, we
model their pairwise communication rates as a function of
their positions in the plane. Consider some time t ≥ 0 and
let N = (R,C) denote the robotic communication network
at that time. Each r ∈ R represents a single robot and each
edge (r, s) ∈ C corresponds to the communication channel
between r and s at time t. We denote communication rate
between robots r and s for every (r, s) ∈ C as comm(r, s).
Finally, we use comp(r) to denote the compute speed of each
robot r ∈ R.

Our goal is to schedule tasks to execute on compute nodes
(robots) in order to minimize the makespan (total execution
time) of the distributed application (task graph) under dynamic
network conditions.

IV. BACKGROUND

In this section, we provide a brief overview of HEFT and
our graph convolutional network-based scheduler.

A. Heterogeneous Earliest Finish Time (HEFT)

HEFT is a greedy algorithm that assigns tasks to the
processor which, given all previously assigned tasks, would
result in the earliest finish time of the task [22]. HEFT aims
at minimizing the makespan according to the following formal
definitions.

Definition 1 (Earliest Start Time). EST (u, r) denotes the
earliest execution start time for task u being executed on
compute node (robot) r. Note that if u is a task with no
predecessors (a root task), then EST (u, r) = 0, ∀r ∈ R.

Definition 2 (Earliest Finish Time). EFT (u, r) denotes the
earliest execution finish time for task u being executed on
compute node r.

Definition 3 (Actual Start and Finish Times). AST (u) and
AFT (u) denote the actual start time and the actual finish time
of task u (depending on which node it actually gets scheduled
to execute on).

Definition 4 (Makespan). After all tasks are assigned to
compute nodes for execution, the makespan is given by:

max
u∈V
{AFT (u)}.

HEFT works by computing the EFT recursively for each
task on each node, using an insertion-based policy whereby
it considers the first available and sufficiently large win-
dow (for a task u and node r, any windows larger than
cost(u)/comp(r)). The order in which HEFT assigns tasks is
based on each task’s rank, which is its average compute time
(across all compute nodes) plus the maximum communication-
adjusted rank of all its parent tasks. The communication-
adjusted rank for a task with respect to a child task is the
sum of its rank and the average communication time required



(across all network connections) for the data dependency
between the tasks. Essentially, the rank is a topological sort of
the task graph that prioritizes tasks with high computation or
communication costs since they are likely to be the bottlenecks
of the application.

HEFT continues to be one of the most popular scheduling
algorithms for its simplicity and effectiveness for a wide vari-
ety of applications and network configurations. For this reason,
we use HEFT as the teacher algorithm for GCNScheduler in
this paper.

B. GCNScheduler

GCNScheduler applies recent advancements in machine
learning for graphs to the task scheduling problem [11].
Task scheduling presents a unique challenge for graph-based
learning because it involves two different graphs - the task
graph (with task and dependency costs) and the network
(with node compute capabilities and communication rates).
The primary innovation of GCNScheduler is the combination
of the two graphs into one graph with the same structure as
the task graph, but with node and edge features that capture
the network configuration. Our previous work shows that that
GCNScheduler can produce schedules in a fraction of the time
of HEFT [11]. Here we summarize it briefly.

Graph Neural Networks: The idea behind GCNs is to
interpret graph edges as a message passing channel between
nodes [16]. In particular, every node is initialized with an em-
bedding (its feature vector). For each GCN layer (the number
of layers is a hyper-parameter), a neural network is applied
to an aggregation of neighbor embeddings. EDGNN [9] was
proposed to capture the nonreciprocal relationship between
nodes in directed graphs by treating incoming and outgoing
edges differently. The embedding for a node u in the input
graph is computed as follows:
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matrices of layer t for embedding of the node itself, neighbor-
ing nodes, incoming edges, and outgoing edges, respectively.
Moreover, h

(t)
n,v and h

(t)
e,(u,v) denote embeddings of node v

and of the edge from node u to node v at layer t, respectively.
Finally, σ is a non-linear activation function (i.e. ReLU).

Input Graph: For a single network N = (R,C) and task
graph G = (V,E), GCNScheduler uses the task graph nodes
and edges to construct the input graph, i.e. Ginput := (V,E).
Since the makespan (along with other objective metrics) is a
function of the required computational time of tasks across
machines and the required communication times to transfer

task outputs to successor tasks across pairs of machines,
GCNScheduler incorporates this information into node and
edge features. The node feature vector for a task u is defined
as:

xn,u :=

(
cost(u)

comp(1)
,
cost(u)

comp(2)
, · · · , cost(u)

comp(|R|)

)T

and the edge feature vector for an edge (u, v) ∈ E is defined
as:

xe,(u,v) :=

(
data(u, v)

comm(1, 1)
,
data(u, v)

comm(1, 2)
, · · · , data(u, v)

comm(|R|, |R|)

)T

The intuition behind xn,u is that these features represent
the required computational time of task u for each compute
node. Similarly, the intuition behind xe,(u,v) is that these
features represent the required time for transferring the result
of executing task u to the successor task v for each pair of
compute nodes.

Recall that our goal is to train GCNScheduler so that it
is generally effective for a given class of networks and/or
task graphs. Thus, our training data (and therefore input
graph) must include labeled data for many task graph/network
pairs. Let Ginput(N,G) represent the input graph for a single
network N and task graph G as described above. Then for
a given set of networks N and set of task graphs G, the
input graph for GCNScheduler during training is Ginput :=⋃

(N,G)∈N×G Ginput(N,G). Essentially, the input graph is a
“forest” of task graphs with network configurations encoded
into node and edge feature vectors.

Imitation Learning: For the training data, GCNScheduler
requires that each node in Ginput be labeled using some
predetermined “teacher” algorithm. For this paper, we use
HEFT as the teacher algorithm. So, for every task graph
G = (V,E) and network N = (R,C) pair in the training
data, we label each node u ∈ V with the node r ∈ R which
HEFT assigns the task to execute on.

V. SIMULATION

In this section we provide implementation details of our
simulation environment and experimental results. More infor-
mation and the source code is available online 1.

A. Implementation Details

Task graph: The task graph we use features a common
pattern for distributed applications modeled as task graphs
with four parallel chains of tasks that can be executed in
parallel (Fig. 2). We assume the data cost of each edge is 1 for
all dependencies. In order to demonstrate that GCNScheduler
generalizes for a class of task graphs, we assume tasks costs
are drawn from a truncated normal distribution with mean 1,
standard-deviation 1/2, and lower/upper bounds of 0 and 2
respectively. For our dataset, we generated 50 task graphs (30
for training, 10 for validation, and 10 for testing).

Simulated IoT Network: For the purpose of comparison
between GCNScheduler and HEFT makespans over time, we

1https://github.com/ANRGUSC/gsdn



Fig. 2. Task graph used for our experiments with a single source nodes and
four parallel four-node chains of tasks. Dependency data sizes are assumed to
be 1 while task cost is drawn from a truncated normal distribution between
0 and 2. Its structure is inspired by the epigenomics scientific workflow
from [10], it captures the essence of many broader applications where the
processing involves multiple parallel chains of tasks.

consider a relatively small network of 10 robots equally spaced
along the perimeter of a randomly generated polygon. We
generate polygons by first drawing the number of vertices
k from {3, 4, . . . , 10} uniformly at random and then using
the well-known 2-opt algorithm [21] to generate a k-vertex
polygon in O(k3) time. Each robot patrols counter-clockwise
along the perimeter of the polygon at the same speed. For
consistency across experiments, we scale polygons so that it
takes exactly 500 units of time for a robot to make one trip
around the polygon. Each robot is assumed to have equal
compute speed of 1. Two robots can communicate directly
whenever they are within s := 50 units of distance from each
other (this number was chosen so that adjacent robots are
always connected at the maximum distance). Two robots that
are closer than this distance (due to the shape of the polygon)
have a communication rate of

1− b

1 + ec(2d/s−1)
+ b

where d is the distance between the robots, b := 0.2 (so that
the communication rate between two directly connected nodes
is between 0.2 and 1), and c := 5 (a constant that affects the
shape of the inverse sigmoid). Observe that, by construction,
the network is always connected but not necessarily fully
connected. Since HEFT requires all pairwise communication
rates, we augment the networks to consider multi-hop com-
munication rate between nodes that are further than distance s
apart. Let r1, r2 ∈ R be two robots further than s away from
each other. Then their communication rate is given by

1∑l
i=1 1/comm(pi, pi−1)

where p = (p0, p1, . . . , pl) is a shortest path (with respect to
inverse communication rate) between r1 and r2 such that p0 =
r0 and pl = r1. This results in highly dynamic communication
rates, as shown in Fig. 3.

Training: For our dataset, we generated 10 random poly-
gons and, for each of these, construct the 10 corresponding

networks after robots patrol for 0, 50, 100, . . . , 450 units of
time. This results in 100 networks in our dataset (60 for
training, 20 for validation, and 20 for testing) and a total
of 2200 task graph/network pairs (1800 for training, 200 for
validation, and 200 for testing). Since each task graph has 19
tasks, the resulting input graph has 41800 nodes (34200 for
training, 3800 for validation, and 3800 for testing). We trained
GCNScheduler with two 64-unit hidden layers, with 0 dropout
using the ReLU activation function, a learning rate of 0.001, a
weight-decay of 0.005 in batches of 128 nodes for 200 epochs
and achieved a testing accuracy of 56%.

B. Simulation Results

After training GCNScheduler, we generated new polygons
and task graphs (drawn from the same distributions as de-
scribed above) and simulated the robots patrolling for 1500
units of time so that each robot traverses the entire perimeter of
the random polygon three times. For each task graph/network
pair, we run four simulations in parallel to compare the
following scheduling algorithms:

1) HEFT: The standard HEFT algorithm
2) GCNScheduler: The trained network used in prediction

mode
3) Random: Each task is assigned to execute on a random

node
4) Static: HEFT runs once on the initial network and the

schedule is not updated
The random and static schedulers are of interest because as
the task graph and/or network size is increased, recomputing
a schedule becomes intractable. Each algorithm recomputes a
schedule when the last execution has completed, as described
in Algorithm 1.

Algorithm 1 Simulation with stop time stop and timestep dt

1: t← 0
2: sched← ∅
3: polygon← random polygon
4: G← random task graph
5: while t < stop do
6: N ← network induced by robot positions at time t
7: if schedule = ∅ or finished executing then
8: sched← SCHEDULER(G,N)
9: end if

10: execute G according to sched on N for dt time
11: t← t+ dt
12: end while

We ran 50 simulations and collected information on robot
communication rates over time, the number of full application
executions in each simulation, and the makespans of each of
these executions. While the average communication rate over
all robots is relatively stable over time (Fig. 3), the individual
communication rate for a single robot is highly volatile over
the course of its patrol around the polygon (Fig. 4). Therefore,
we expect that a scheduler which can adapt to changing net-
work conditions (HEFT and GCNScheduler) will be relatively



Fig. 3. Average communication rate (with one-standard-deviation error band)
of all robots over the time it takes to make one trip around the perimeter of
the polygon.

Fig. 4. Average communication rate (with one-standard-deviation error band)
of one robot as it makes one trip around the perimeter of the polygon.

stable while a scheduler that does not (Static and Random
schedules) will experience large spikes in makespans as nodes
communication rates degrade.

Fig. 5 shows the average makespan of each scheduler over
the average makespan of the HEFT scheduler, or makespan
ratio. This metric is an indicator of how much better or
worse than HEFT a scheduler is at minimizing makespan
(< 1 indicates better than HEFT; > 1 indicates worse). Over
all 50 simulations, GCNScheduler has the lowest average
makespan ratio and smallest variance. Since schedules are
produced back-to-back, the makespan has a direct effect on the
number of executions (or the number of schedules produced)
for each scheduler. Fig. 6 shows that while HEFT is able to
complete the most executions in one trip around the polygon,
GCNScheduler outperforms the static and random schedulers
and achieves the smallest variance. The key takeaway is that
GCNScheduler is able to adapt to the high volatility of the

Fig. 5. Violin plot for 50 simulations of makespan ratios for each scheduler.
For each violin, the dashed line marks the mean, the solid line marks the
median, and the top and bottom of the boxes mark the first and third quartiles,
respectively. GCNScheduler has the lowest average makespan ratio of 1.58
with a standard deviation of 0.154, the static scheduler an average makespan
ratio of 2.246 with a standard deviation of 0.831, and the random scheduler
an average makespan ratio of 2.442 with a standard deviation of 0.396.

Fig. 6. Violin plot for 50 simulations of the number of task graph executions
for each scheduler. HEFT supports 15 executions on average with a standard
deviation of 2.087, GCNScheduler supports 10.48 executions on average
with a standard deviation of 1.163, the static scheduler supports 7.82
executions on average with a standard deviation of 2.247, and the random
scheduler supports 1.78 executions on average with a standard deviation of
1.379.

network conditions because of its fast computation times.

VI. CONCLUSIONS AND FUTURE WORK

The results from our experiments reveal many interesting
directions for future research. First, one issue with GCNSched-
uler is that it cannot learn the ordering that HEFT prescribes
when scheduling since it only labels tasks with the compute
nodes they should execute on. This may be part of the reason
why the accuracy is relatively low. It may be interesting to
explore whether different loss functions (we use cross-entropy
loss) or neighborhood embedding aggregation functions (we
use averaging) can account for this.



In order to make the problem interesting, we chose a
task graph for which HEFT is able to produce “interesting”
schedules (i.e. not simply scheduling everything on a single
node). In order to create better models, though, we need to
better understand the performance of HEFT (or any other
scheduler) on different classes of task graphs and networks.
It seems reasonable, for example, that one scheduler works
very well on one class of networks while another scheduler
works well on a different class. GCNScheduler could even be
trained using a hybrid teacher algorithm which takes the best
of multiple traditional schedules.

We have experimented with GCNScheduler on a network
of mobile robots (Fig. 1) and preliminary findings indicate
that it adapts when a single robot becomes disconnected from
the network [5]. These findings were limited to four network
nodes, while the simulation results presented here indicate
that GCNScheduler shows more impressive performance on
larger networks. Experimenting with larger, real-world robot
networks is another direction for future work.

In this paper, we have demonstrated that a Graph Con-
volutional Netowrk-based Scheduler can learn to produce
schedules with decent makespan and can compute schedules
fast enough to adapt to dynamic networks, making it applicable
for the Internet of Robotic Things.
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