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ABSTRACT
Motivated by collaborative localization in robotic sensor networks,
we consider the problem of large-scale network localization where
location estimates are derived from inter-node radio signals. Well-
established methods for network localization commonly assume
that all radio links are line-of-sight and subject to Gaussian noise.
However, the presence of obstacles which cause non-line-of-sight
attenuation present distinct challenges. To enable robust network
localization, we present Sparse Matrix Inference and Linear Em-
bedding (SMILE), a novel approach which draws on both the well-
known Locally Linear Embedding (LLE) algorithm and recent ad-
vances in sparse plus low-rank matrix decomposition. We demon-
strate that our approach is robust to noisy signal propagation, severe
attenuation due to non-line-of-sight, and missing pairwise measure-
ments. Our experiments include simulated large-scale networks, an
11-node sensor network, and an 18-node network of mobile robots
and static anchor radios in a GPS-denied limestone mine. Our find-
ings indicate that SMILE outperforms classical multidimensional
scaling (MDS) which ignores the effect of non-line of sight (NLOS),
as well as outperforming state-of-the-art robust network localiza-
tion algorithms that do account for NLOS attenuation including a
graph convolutional network-based approach. We demonstrate that
this improved accuracy is not at the cost of complexity, as SMILE
sees reduced computation time for very large networks which is
important for position estimation updates in a dynamic setting, e.g
for mobile robots.

KEYWORDS
network localization, graph signal processing, low-rank matrix
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1 INTRODUCTION
Robotic sensor networks operating in GPS-denied environments
can benefit from collaborative localization [26]. When distance
measurements between network nodes (e.g. mobile robots or static
beacons) are available, the network localization problem seeks to
exactly recover the positions of each node in space. Intuitively,
network localization algorithms leverage pairwise links to constrain
the position estimate of every node in the network. If the locations
of some nodes are known, these nodes are considered anchors.
When sufficient conditions on the number of anchors and the graph
induced by the distance measurements are met, we can recover the
positions of all nodes [16].

However, in realistic scenarios the distance measurements are
typically noisy. For example, radio signals can be used to estimate
distance based on received signal strength, but signals are subject

Figure 1: Illustration of network localization with NLOS. The
objective is to accurately determine the localization of agents
(grey) based on the known positions of anchors (yellow) given
the constrains of noisy LOS links (green) and links with ad-
ditional NLOS attenuation (red).

to noise from the wireless channel [31]. When this noise is assumed
to be Gaussian with zero-mean1, the redundancy offered by many
links in a highly connected network serves to mitigate the problem.
This explains why localization performance improves with the
number of anchors used as reference points.

Formany applications, including robotic exploration of unknown
environments, signals see significant degradation from the presence
of walls and obstacles. These non-line-of-sight (NLOS) links are
difficult to model without an a priori map but have a significant
affect on the relationship between received signal strength (RSS)
and distance [10, 14]. Therefore, the ability to infer whether a pair
of transmitters and receivers is NLOS can greatly improve network
localization performance.

Additionally, when network nodes are spread over long distances,
as may also be the case for robotic exploration, it is possible for the
packets used to measure RSS to be dropped. When signal strength
measurements are unavailable at long distances, our large-scale
network localization approach must be robust to missing pairwise
measurements.

Contribution: In this work, we examine the network local-
ization problem in the presence of noisy signals where pairwise
measurements may be NLOS or missing. We make two key obser-
vations: (1) the Euclidean distance matrix of the true node positions
(in 𝑑 dimensions) will have rank 𝑑 + 2, which we show in Sec. 3,
and (2) the matrix capturing the additional NLOS attenuation is
commonly sparse and non-negative, i.e., there are a limited number

1Gaussian noise in dB is also referred to as log-normal fading.



Table 1: List of Abbreviations

Abbr. Description
EDM Euclidean Distance Matrix
LLE Locally Linear Embedding
MDS Multidimensional Scaling
NLOS Non Line of Sight
PSVD Partial SVD
RMSE Root Mean Squared Error
SDP Semi Definite Programming
SVD Singular Value Decomposition

of walls which can only degrade signal strength. Given these ob-
servations, our approach draws on recent advances in sparse plus
low-rank decomposition to first extract the positively biased NLOS
attenuation, which we refer to as sparse matrix inference. After
extracting the NLOS attenuation, we leverage a popular method for
dimensionality reduction, locally linear embedding (LLE), to recover
a set of weights which allow linear reconstruction to determine the
exact positions of all nodes given the anchors’ positions.

Specifically, we extend the discrete optimization approach for
sparse matrix recovery which is presented in [3] to (1) handle miss-
ing pairwise measurements by imputation and (2) approximate
the unknown sparsity structure of the sparse component of the
matrix. Additionally, we provide details for solving for node po-
sitions using the LLE weight matrix directly (using least squares
method) without the need for additional eigen-decomposition and
coordinate frame alignment used conventionally. Our algorithm
combines recent advances in sparse plus low rank decomposition
and well established and interpretable algorithms like MDS and
LLE and outperforms them in the face of NLOS attenuation.

Evaluation:We demonstrate that SMILE significantly improves
localization accuracy over baseline methods which ignore the af-
fect of NLOS attenuation. Further, we draw parallels between this
approach and another method for graph signal processing which
has recently been demonstrated as promising, namely Graph Con-
volutional Networks (GCNs) [36]. We compare the performance of
SMILE and a state-of-the-art GCN implementation on large-scale
simulated networks and demonstrate an improvement in localiza-
tion accuracy and reduced computation time for network of more
than 1000 nodes. Finally, we evaluate performance on two real-
world networks: an outdoor wireless sensor network with 11 nodes,
and 5 mobile robots and 13 static radios in a GPS-denied limestone
mine with significant NLOS attenuation.

The paper is organized as follows. In Section 2 we provide a brief
overview of seminal and recent work in network localization, and
in Section 3 we formally define the problem and notation. SMILE is
introduced and explained in detail in Section 4, including sparse
matrix inference and subsequent steps for position estimation. We
also draw parallels between our approach and the existing graph
learning-based method. In Section 5 we provide implementation
details as well as experimental results on real and simulated data.
We give concluding remarks in Section 6.

2 BACKGROUND AND RELATEDWORK
Network localization: Network localization is well-researched,
and is commonly formulated as a least squares problem [2, 9, 24].
Multidimensional scaling (MDS) and its extensions are popular
methods for solving this problem [29]. Classical MDS uses the dis-
tance matrix to compute a matrix of scalar products, typically called
the Gram matrix, that captures pairwise correlation of the posi-
tion vectors. The principal components from eigen-decomposition
of this matrix are then used to recover relative node positions [1].
Rather than compute over the entire distance matrix, Locally Linear
Embedding (LLE) [27, 30] applies principal component analysis to
small neighborhoods, which improves performance when the reduc-
tion from the noisy (high-dimensional) data to the low-dimensional
true positions is non-linear, and has shown promise in sensor net-
work localization [18].

Exploiting sparsity: If the data is well-described by a particular
statistical model (e.g. Gaussian or log-normal), we can instead form
the maximum likelihood estimation problem [25], and solve using
semi-definite programming (SDP) methods [4, 5]. Recent works
extend SDPmethods to consider non-Gaussian noise [38] and, more
specifically, NLOS noise [8, 19, 22]. Jin et al. demonstrate that when
the NLOS noise has a certain structure, namely non-negative and
sparse, a sparsity-promoting term in the objective function can
improve the performance of SDP approaches [19]. However, SDP
methods suffer with respect to complexity and are intractable for
very large networks [36].

Sparse and low rank decomposition: Another approach is to
recover the matrix of NLOS attenuation directly. In recent years,
sparse and low-rank matrix recovery has drawn attention due to its
relevance in signal processing, statistics, and machine learning [34].
Bertsimas et al. recently proposed a discrete optimization approach
to sparse and low-rank recovery which uses alternating minimiza-
tion [3]. Our work leverages this method, extends it to the case of
missing measurements and unknown sparsity, and demonstrates
that it can serve as an important component of a robust network
localization algorithm.

Graph convolutional networks: To effectively exploit the rela-
tional information of graph-structured data, graph neural networks
(GNNs) have recently become a popular method for approaching
optimization problems in wireless networks [21]. Yan et al. recently
demonstrated promising results in the application of Graph Con-
volutional Networks (GCNs) to the network localization problem.
Their approach maintains accurate localization despite NLOS at-
tenuation, and is scalable to large-scale networks at an affordable
computation cost. However, we will see that the learned model
is unable to exactly recover positions for a completely observed
distance matrix in the absence of noise. In this work we propose a
novel network localization algorithmwhich builds on the principles
of multidimensional scaling for exact recovery in the absence of
noise, exploits the sparsity of NLOS attenuation for improved local-
ization accuracy, and scales to very large networks at an affordable
computation cost.

3 PROBLEM FORMULATION
Let 𝐴 be the set of anchors whose positions are known, where
|𝐴| = 𝑛𝐴 . Let 𝐵 be the set of agents whose positions are unknown,
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where |𝐵 | = 𝑛𝐵 . Let 𝐶 = 𝐴 ∪ 𝐵 be the set of nodes which includes
both anchors and agents, with 𝑛𝐴 + 𝑛𝐵 = 𝑛. We define the (𝑛 × 𝑛)
true distance matrix D as

D[𝑖, 𝑗] = | |p𝑖 − p𝑗 | |

where p𝑖 = [𝑥𝑖 , 𝑦𝑖 ]𝑇 is the position of node 𝑖 . We establish the
convention that the first 𝑛𝐴 rows and 𝑛𝐴 columns pertain to the
anchors. D◦2 is the Euclidean distance matrix (EDM, containing
squared distances i.e D squared entry-wise), which is zero along the
diagonal and symmetric [17]. If matrix P ∈ R𝑛×2 with P[𝑖, :] = p𝑇

𝑖

be the position matrix, we can see that D◦2 has rank 4. In general,
the EDM of a configuration of points embedded in R𝑑 has rank at
most 𝑑 + 2 (and exactly 𝑑 + 2 if the points are in general position
as opposed to more special or coincidental cases, e.g., points in
3D which lie on a line). This is briefly justified below, with further
details provided in [13].

D[𝑖, 𝑗]2 = | |p𝑖 − p𝑗 | |2

= ⟨p𝑖 − p𝑗 , p𝑖 − p𝑗 ⟩
= ⟨p𝑖 , p𝑖 ⟩ + ⟨p𝑗 , p𝑗 ⟩ − 2⟨p𝑖 , p𝑗 ⟩

= p𝑇𝑖 p𝑖 + p𝑇𝑗 p𝑗 − 2p𝑇𝑖 p𝑗

=⇒ D◦2 = diag(PPT)1T︸          ︷︷          ︸
𝑟𝑎𝑛𝑘−1

+ 1diag(PPT)𝑇︸          ︷︷          ︸
𝑟𝑎𝑛𝑘−1

− 2PPT︸︷︷︸
𝑟𝑎𝑛𝑘−2

Since 𝑟𝑎𝑛𝑘 (A+B) ≤ 𝑟𝑎𝑛𝑘 (A)+𝑟𝑎𝑛𝑘 (B) and 𝑟𝑎𝑛𝑘 (CCT) = 𝑟𝑎𝑛𝑘 (CTC) =
𝑟𝑎𝑛𝑘 (C), we have D◦2 as low-rank with rank = 4.

Let O be the matrix that contains the distances that we observe,
whereO[𝑖, 𝑗] is a function of the strength of radio signal transmitted
by node 𝑖 and received by node 𝑗 . In general, our observation can
be captured as

O = Ω ◦ [D + N + S]
where Ω is the observation mask and takes on values of 1 when a
measurement is available and 0 otherwise (for instance, when the
transmitter and receiver are out of range).N is an asymmetricmatrix
capturing noise in the observations, which we assume is Gaussian
and zero-mean. S captures the additional NLOS attenuation, and as
in [19] we assume S is non-negative and sparse. We also assume
S is symmetric which relies on assumptions that an attenuating
obstacle will affect a radio link in both directions equally.

We make the realistic assumption that nodes are in general
position, meaning that in 2D they do not lie on a straight line. We
also assume that an upper bound on the distance between any two
nodes, 𝑑max, is known or can be approximated. Our objective is
finding an estimate for the locations of all nodes P̂ = [p̂1, ..., p̂𝑛]𝑇
which is consistent with the prior information - (1) the observations
in O as well as (2) the known anchor positions PA = [p1, ..., p𝑛𝐴 ]𝑇 .

4 SMILE
In this section we propose Sparse Matrix Inference and Linear
Embedding, our novel large-scale network localization algorithm,
which is illustrated in Fig. 2. Details of the algorithm are presented
in Algorithm 1. In subsection 4.1, we discuss our method of extract-
ing NLOS attenuation via sparse matrix inference, which results in
a low-rank approximation of the Euclidean distance matrix. Then in

Anchor  positions

X

Observations

Complete the 
Euclidean 

distance matrix

Sparse matrix inference

Construct 
locally linear 
weight matrix

Solve sparse 
sub-problem

Solve low-rank 
sub-problem

E

Y

Y 

(sparse NLOS)

X

Predicted locations W

Figure 2: An overview of Sparse Matrix Inference and Linear
Embedding (SMILE).

subsection 4.2, we discuss our method of transforming this matrix
into an estimate of the locations of all nodes.

4.1 Sparse Matrix Inference
For a given input matrix E ∈ R𝑛×𝑛 , for which E = X + Y, sparse
matrix inference seeks to find the low-rank component X ∈ R𝑛×𝑛
and sparse component Y ∈ R𝑛×𝑛 which solves:

min
X,Y

𝑓 (X,Y) = | |E − X − Y| |2𝐹 + 𝜆 | |X| |
2
𝐹 + 𝜇 | |Y| |

2
𝐹

s.t. rank(X) ≤ 𝛼, | |Y| |0 ≤ 𝛽
(1)

where | |X| |𝐹 denotes the Frobenius norm. In this subsection we
describe how to decompose E X and Y using alternating minimiza-
tion, and how to use this technique on the problem defined in Sec.
3.

Firstly, we square the observed matrix (line 2). Temporarily as-
suming N = 0 and no missing observations, i.e Ω = 11T,

E = O◦2 = (D + S)◦2

= D◦2︸︷︷︸
low-rank

+ S◦2 + 2D ◦ S︸         ︷︷         ︸
sparse

(2)

where the expression in parentheses is non-negative and sparse
(because S is non-negative and sparse), and D◦2 is low-rank. Thus
the problem is amenable to the sparse matrix inference framework.

Let us consider the case with noise 𝑁 ≠ 0 and no missing obser-
vations

E = O◦2 = (

D̃︷︸︸︷
D + N+S)◦2 = (D̃ + S)◦2

= D̃◦2 + S◦2 + D̃ ◦ S︸       ︷︷       ︸
sparse

(3)

The last expression is exactly the same as the formulation in 2
except that D̃◦2 = D◦2 + N◦2 + 2N ◦ D may no longer be low rank
due to the addition of N◦2 + 2N ◦ D where entries of the first term
are now i.i.d from a Chi-Squared Distribution X2

1 . However, in our
ablation study, we empirically verify that as long as the standard
deviation of the normal noise in entries of N is not too large, using
the estimated low-rankmatrix from the sparse matrix plus low-rank
inference, SMILE is able to recover P fairly faithfully under RMSE
loss.
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Table 2: SMILE parameters

Parameter Symbol
𝑘 Number of neighbors
𝛽𝑖 Initial sparsity estimate
𝜂 Step size
𝑇 Number of random initializations
𝜆 Low-rank matrix regularizer
𝜇 Sparse matrix regularlizer
𝜖 Inner loop tolerance
𝜖𝛽 Outer loop tolerance

Missing measurements: The approach presented in [3] as-
sumes a complete input matrix. While more complex approaches
to matrix completion exist, for example by finding the sum total
length of the shortest path between two nodes [32, 33], we take a
simpler approach. When Ω ≠ 11T, we complete the observation
matrix by filling in missing values with 𝑑max (line 1). Even in the
face of missing observations, we show that the problem remains
amenable to the sparse matrix inference framework as long as the
missing observations are not too large of a fraction of the total
number of observations in O.

E = Õ◦2 = [Ω ◦ O]◦2

= [Ω ◦ (D + N + S) + (1 − Ω)𝑑𝑚𝑎𝑥 ]◦2

= [Ω ◦ D + Ω ◦ (N + S) + (1 − Ω)𝑑𝑚𝑎𝑥 ]◦2

= [D − (1 − Ω) ◦ D + Ω ◦ (N + S) + (1 − Ω)𝑑𝑚𝑎𝑥 ]◦2

= [D + Ω ◦ N + Ω ◦ S + (1 − Ω) ◦ (𝑑𝑚𝑎𝑥 I − D)︸                                  ︷︷                                  ︸
𝑆 (sparse)

]◦2

= [D + Ω ◦ N︸      ︷︷      ︸
D̃

+S̃]◦2 = [D̃ + S̃]◦2

= D̃◦2 + S̃◦2 + 2D̃ ◦ S̃︸         ︷︷         ︸
sparse

(4)

Thus, Õ decomposes similarly to O as long as (1 − Ω) + S is still
sparse, i.e. the total number of NLOS and missing measurements is
low. D̃◦2 is still amenable to SMILE like in the previous case.

Alternating minimization: As presented in [3], we alternate
between solving two sub-problems. For a given X, we estimate Y
by composing a sparse matrix with non-zero entries at the largest
indices of (E − X). This is described further in Algorithm 2. Then
for a given Y, we estimate X by reducing the rank of (E − Y). This
repeats until the value of the objective function in Eq. 1 has con-
verged, corresponding to the inner loop (lines 11-18). We initialize
X with a random, low-rank matrix and repeat this process for𝑇 > 0
random initialization, ultimately selecting the decomposition which
minimizes the objective function (lines 5-19).

Unknown sparsity: The approach presented in [3] assumes the
sparsity of Y is known, however in realistic settings this may not be
true. We observed empirically that for a matrix with known compo-
nents, solving the sparse matrix inference problem for increasing
estimate 𝛽 causes the objective function to decrease, and around
the true value of 𝛽 it converges (Fig. 3. This motivates the outer

Algorithm 1 SMILE
Input: O (observation matrix), P𝐴 (anchor positions), 𝛼 (desired

rank)
Output: P̂B (agent location estimates)
1: Õ = O + (1 + Ω)𝑑max
2: E = Õ◦2

3: 𝛽 ← 𝛽𝑖
4: while Δ𝑓 /𝑓 > 𝜖𝛽 do
5: for 𝑡 in {1, ...,𝑇 } do
6: X′ ∈ R𝑛×𝑛 ← random
7: U,Σ,V𝑇 = PSVD(X′, 𝛼)
8: X = UΣV𝑇

9: Y ∈ R𝑛×𝑛 ← 0
10: 𝑓 = | |E − X − Y| |2

𝐹
+ 𝜆 | |X| |2

𝐹
+ 𝜇 | |Y| |2

𝐹
11: while Δ𝑓 /𝑓 > 𝜖 do
12: Y′ = compose_sparse(E − X, 𝛽)
13: Y = 1

1+𝜇 Y′ ◦ (E − X)
14: X′ = 1

1+𝜆 (E − Y)
15: U,Σ,V𝑇 = PSVD(X′, 𝛼)
16: X = UΣV𝑇

17: 𝑓 = | |E − X − Y| |2
𝐹
+ 𝜆 | |X| |2

𝐹
+ 𝜇 | |Y| |2

𝐹
18: end while
19: end for
20: 𝛽 ← 𝛽 + 𝜂
21: end while
22: W ∈ R𝑛×𝑛 ← 0
23: for each node 𝑖 do
24: find 𝑘 nearest neighbors 𝑁𝑁 (𝑖)
25: for each pair of neighbors ( 𝑗 , 𝑙 ) do
26: H ∈ R𝑘×𝑘 where H[ 𝑗, 𝑙] = 1

2 (X[𝑖, 𝑙] + X[ 𝑗, 𝑖] − X[ 𝑗, 𝑙])
27: solve Hw = 1 for w
28: end for
29: W𝑖 ← w/∑w at indices of neighbors
30: end for
31: m = (I −W)𝐴P𝐴
32: solve (W − I)𝐵 P̂𝐵 = m for P̂𝐵
33: return P̂B

Algorithm 2 compose_sparse

Input: M ∈ R𝑛×𝑛 (matrix), 𝛽 (sparsity)
Output: B (binary matrix)
1: sorted indices = argsort(M)
2: one indices = sorted indices[-𝛽 :]
3: B ∈ R𝑛×𝑛 ← 0
4: B[one indices] = 1
5: return B

loop (lines 3-21). To reduce computation time, we can initialize 𝛽
with the approximate sparsity, increase the search step size 𝜂, or
increase the converge tolerance 𝜖𝛽 . However this may come at the
cost of localization accuracy.
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Figure 3: The final value of the sparse matrix inference ob-
jective function 𝑓 (Eq. 1) when we assume different levels of
sparsity 𝛽 , plotted alongside the true sparsity 𝛽 (dotted line)
for various simulated matrices E ∈ R500×500.

4.2 Linear Embedding
Next we find the set of k nearest neighbors 𝑁𝑁 (𝑖) for each node
𝑖 using the estimated EDM gotten from sparse matrix inference.
For each node, we compute a 𝑘 × 𝑘 matrix H which captures the
pairwise similarity between the nodes in 𝑁𝑁 (𝑖) ∪ {𝑖} (line 25)
using the corresponding sub-matrix in the estimated EDM. H is
calculated using the same approach used for classical MDS, but for
local neighborhoods [1]. From H we can recover the desired weight
matrix W (lines 26-27), first by solving for w and then inserting
it at the row position corresponding to the node index of 𝑖 with
the entries in w aligned with the column belonging to the nearest
neighbours and zeros for non-neighbours. At this point, each row
of W corresponds to a node and captures how the node’s position
can be expressed as a linear combination of its neighbors. This is
a meaningful representation of the positions of all nodes, but is
not yet a node embedding. Typically, LLE then computes a sparse
matrix (I −W)𝑇 (I −W) whose eigenvectors corresponding to the
two smallest non-zero eigenvalues result in a solution up to rotation
and translation.

Using the anchors’ positions: In this setting, we can compute
a solution using W and the anchor location P𝐴 directly. This is
possible because, by construction, WP = P. This is essentially a
system of 𝑛 equations with 𝑛𝐵 < 𝑛 unknowns. Treating W − I ∈
R𝑛×𝑛 as a block matrix, let (I −W)𝐴 = (I −W) [:, : nA] ∈ R𝑛×𝑛𝐴
be the sub-matrix corresponding to the anchors and (W − I)𝐵 =

(I −W) [:,−nB :] ∈ R𝑛×𝑛𝐵 be the sub-matrix corresponding to the
agents, where I ∈ R𝑛×𝑛 is the identity matrix. Similarly treating
𝑃 ∈ R𝑛×2 as a block matrix, let 𝑃𝐴 = 𝑃 [: 𝑛𝐴, :] ∈ R𝑛𝐴×2 and 𝑃𝐵 =

𝑃 [−𝑛𝐵, :] ∈ R𝑛𝐵×2 correspond to the block matrices for positions
of anchors and agents respectively. With some manipulation we

get,

WP = P =⇒

𝑇︷   ︸︸   ︷
(W − I) P = 0 =⇒ TP = 0

=⇒
[
TA | TB

] 
PA
−
PB

 = 0

=⇒ TAPA + TBPB = 0 =⇒ TAPA = −TBPB

=⇒ (I −W)𝐴P𝐴︸         ︷︷         ︸
m, known

= (W − I)𝐵︸     ︷︷     ︸
known

P𝐵︸︷︷︸
unknown

(5)

(lines 29-30) and from the last expression we can estimate a solu-
tion P̂B for the unknown agent positions using the least squares
minimization.

4.3 Comparison with Graph Convolutional
Networks

We highlight several interesting parallels between SMILE and GCN.
Briefly, the approach presented by Yan et al. computes the position
estimates

P̂ = A′𝜙 (A′ (A ⊙ O)Z(1) )Z(2) (6)
where A is the thresholded adjacency matrix for a given threshold
𝜃𝐺𝐶𝑁 , A′ is the row-normalized augmented thresholded adjacency
matrix, 𝜙 (·) is a nonlinear activation function, and Z(1) ,Z(2) are
learned weights. Note that the graph signal is the observed matrix.

(1) 𝜃𝐺𝐶𝑁 and 𝑘: This approach introduces a threshold such
that edges between nodes in the graph are present only if
the observed distance is less than the threshold. Decreasing
this threshold is similar to decreasing the number of nearest
neighbors, and both have the benefit of noise truncation.
However, as the threshold is increased, GCN experiences
over-smoothing due to the aggregation step. Intuitively, if
every node is connected to every other node, the aggregation
step causes all node embedding to collapse at a single point.
This means that more information, i.e., additional pairwise
measurements, actually hurts the algorithm. SMILE does not
experience this issue, and we will see in Fig. 6 that increasing
𝑘 improves performance at the cost of increased runtime.

(2) Low-pass filtering and PSVD: Repeated multiplication
by the normalized adjacency matrix acts as a low pass fil-
ter [23]. This reduces the rank of the graph signal, similar
to the process of extracting the low-rank component of the
noisy euclidean distance matrix. However, repeated multipli-
cation by the normalized adjacency matrix reduces the rank
of the observed matrix by some amount, which corresponds
to distances (rather than squared distances). Our approach
applies rank reduction to exactly reduce the Euclidean dis-
tance matrix to rank 𝑑 + 2, informed by the principles of the
problem formulation.

(3) Convolution and linear embedding: Each convolution
layer multiplies the adjacency matrix and input matrix by a
set of weights. Intuitively, this makes the node features at
the next layer a weighted sum of the neighbor features. The
learned GCN weights are analogous to the set of weights W
in SMILE which allow linear reconstruction of agents from
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the anchors positions. However, the repeated convolutions
and nonlinear activation prevent a straightforward analysis.
The interpretability of W is an advantage of our approach.

Qualitatively, we expect SMILE to outperform GCN because (1)
it is not subject to oversmoothing and makes careful and productive
use of additional pairwise measurements, (2) it finds a Euclidean
distance matrix with the exact expected rank, and (3) it relies on
principled methods to determine a weight matrix relating nodes to
their neighbors, which is thus interpretable. In the next section, we
compare these approaches quantitatively.

5 RESULTS
In this section we evaluate the performance of SMILE with respect
to localization accuracy and computation time. We also consider
performance under different noise settings, as an ideal method is
both robust to high-levels noise and able to exactly recover positions
when possible. Localization accuracy is measured by the root-mean-
squared-error (RMSE) given by | |P𝐵 − P̂𝐵 | |𝐹 . Robustness considers
the affect of Guassian noise, NLOS attenuation, and missing pair-
wise measurements. The experiments consider networks in 2D, thus
the desired rank of EDM is 𝛼 = 4. The SMILE parameters are set
to 𝑘 = 50, 𝛽𝑖 = 5 𝑛2

100 , 𝜂 = 𝑛2

100 ,𝑇 = 1, 𝜆 = 0.01, 𝜇 = 0.1, 𝜖 = 0.001, and
𝜖𝛽 = 0.01. For comparison, we train a two-layer GCN according
to [36] with distance threshold 1.2. More details of our implemen-
tation are available online 2.

5.1 Simulation results
Our simulated scenarios consider 𝑛 nodes randomly placed over a
5m × 5m square area, with the first 𝑛𝐴 nodes considered anchors.
Noise N is drawn from a zero-mean Gaussian, N[𝑖, 𝑗] ∼ N (0, 𝜎2).
NLOS noise is drawn from a uniform distribution, S[𝑖, 𝑗] = S[ 𝑗, 𝑖] ∼
U[0, 10] with probability 𝑝NLOS and 0 otherwise. Both matrices
are zero along the diagonal, N[𝑖, 𝑖] = S[𝑖, 𝑖] = 0. The observation
mask limits our observed distance measurements by a threshold 𝜃
such that Ω[𝑖, 𝑗] = 1 if O[𝑖, 𝑗] ≤ 𝜃 and 0 otherwise.

Comparison with state of the art: Firstly we consider the
setting where 𝑛 = 500, 𝑛𝐴 = 50, 𝜎 = 0.1, 𝑝NLOS = 1

10 , and 𝜃 =

𝑑max, for which an example dataset is available3. Fig. 4 illustrates
the performance of SMILE, which achieves an RMSE of 0.06 in
5.22 seconds, and GCN which achieves an RMSE of 0.11 in 5.73
seconds. GCN’s performance is consistent with that reported in [36],
which reports RMSE for various other methods, including SDP with
sparsity promoting regularization [19] which achieves an RMSE
of 0.26. SMILE achieves the highest reported localization accuracy,
and Fig. 5 illustrates that not only is the error low on average but
the error density has a smaller tail.

In Fig. 6, we investigate the localization accuracy and compu-
tation time as we vary 𝑘 , the number of neighbors used for linear
embedding. We observe that RMSE remains consistent for 𝑛𝐴 ≥ 50.
While the minimum of 0.048 is reached at 𝑘 = 130, this comes at
the expense of increased computation time. Note that selecting 𝑘 is
analogous to setting the GCN threshold, however we do not observe
the degradation in performance that GCN is prone to when the
threshold is too high. This comes from the aggregation component
2https://github.com/ANRGUSC/smile-network-localization
3https://github.com/Yanzongzi/GNN-For-localization
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Figure 4: Localization with GCN (Yan et al. [36]) and novel
SMILE for a 500 node networkwith 50 anchors. GCN achieves
RMSE 0.11 and SMILE achieves RMSE 0.06.
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Figure 5: Error density for GCN and SMILE on the data from
Fig. 4, where SMILE results in a more desirable distribution.
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Figure 6: RMSE (solid line) and runtime (dashed line) trade-
off as we vary the number of neighbors 𝑘 . Each point is the
average of 10 trials.

of convolution, which causes over-smoothing if a node has too
many neighbors and results in the position estimates collapsing to
a point.

Robustness: Fig. 7 demonstrates the performance of SMILE and
GCN as 𝑝NLOS varies from 0 to 1

2 . From this, we observe that SMILE
outperforms GCN for up to 30% NLOS links. Beyond this, the as-
sumption that S is sparse is no longer true, and performance suffers
as expected. The same is true when 𝜃 falls below 3.5, and (1−Ω) is
no longer sparse, i.e not enough entries in the observations matrix
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Figure 7: Performance of SMILE and GCN as the probability
of NLOS links, standard deviation of Gaussian noise, and
threshold for distances which can be measured are varied
(𝑇 = 2).

Õ. Notably, we do not observe a clear trend in the performance
of GCN as 𝜎 increases. We posit that this is because the learned
approach does not rely on exact decomposition, even in the absence
of noise.

To test this, we compare the performance of GCN and SMILE
on an ideal dataset and consider the results in Fig. 8. While the
performance of both methods is better in this ideal setting, we
observe that GCN cannot exactly recover positions. While being
robust to Gaussian noise and sparse non-Gaussian noise, SMILE is
also accurate in ideal scenarios.

Complexity: As we increase the number of nodes, accuracy
of both methods increases (accuracy similarly increases with the
percentage of anchors). However, complexity increases with the
size of the network. Because our approach is iterative, we measure
complexity numerically (computation time) in lieu of analytically
as it is difficult to predict when the sparse matrix inference will con-
verge. Fig. 9 shows that the computation time of both SMILE and
GCN remain reasonable as 𝑛 increases. For least squares optimiza-
tion and SDP, we have seen that the compute time for very large
networks becomes intractable [36]. For the 1000 node network, the
time to predict P̂ using SMILE is 29.84 seconds while the time to
train and predict P̂ using GCN is 46.90 seconds. Note that this is
a fair comparison because the learned approach requires training
a specific model for each network; the same learned weights are
not applicable to a new network, and neither is the SMILE weight
matrix H. The low compute times for SMILE are likely because the
linear embedding component depends on the number of neighbors
(rather than the number of nodes) and the sparse matrix inference
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Figure 8: Performance of SMILE and GCN in an ideal setting
(𝑝NLOS = 0, 𝜎 = 0) and a noisy setting (𝑝NLOS = 1

10 , 𝜎 = 0.5).
SMILE is robust to noise without sacrifice performance in
ideal settings.

component adapts the step size to the number of nodes. We high-
light that scalability is not at the cost of localization accuracy. For
𝑛 = 1500, SMILE achieves RMSE of 0.05 while GCN achieves RMSE
of 0.08.

Ablation: Thus far we have compared our approach to an exist-
ing solution, but it is also interesting to consider the role of each
component of SMILE and, in particular, whether simpler existing
approaches from the literature are sufficient. Fig. 10 considers a
dataset with 𝜎 = 0.3, 𝑝NLOS = 1

10 , and 𝜃 = 5. We compare the
performance of (A) no rank reduction, (B) rank reduction via PSVD,
and (C) sparse and low-rank matrix recovery. In conjunction, we
consider (1) classical MDS with the Kabsch algorithm for coordinate
system registration [1] and (2) LLE-based embedding using anchor
positions. Specifically, the top left plot represents a naive baseline:
multidimensional scaling assuming Gaussian zero-mean noise. The
bottom right plot represents SMILE.

We observe several key takeaways from this figure.

(1) De-noising: Moving from left to right, each column of this
plot contains increasing more sophisticated noise reduction
and decreases the final RMSE. In particular, sparse matrix
inference increases localization accuracy by almost an order
of magnitude.

(2) Nearest neighbors: Methods in the top row use all avail-
able links in eigen-decomposition, while methods in the
bottom row use only the nearest neighbors to determine
weights for linear reconstruction. This local-neighborhood
approach consistently improves localization accuracy. Note
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Figure 9: Compute time for different sizes of networks for
GCN and SMILE. Previous work has shown that learned ap-
proaches (GCN, MLP, NTK) scale better than optimization
approaches (LS, ECM, SDP) [36]. SMILE outperforms GCN
for very large networks.

that if 𝜃 ≥ 𝑑max, i.e. no measurements are missing, the per-
formance of (1) and (2) are similar. This is likely because
LLE’s strength comes from relying more on nearby measure-
ments, and our approach to matrix completion puts missing
measurements at effectively long distances. In setting where
long-distance measurements are unreliable, which is com-
monly the case in realistic wireless communication [31],
using nearest neighbors is advantageous.

(3) SMILE:The combination of both sparsematrix inference and
linear embedding is more robust to NLOS attenuation and
missing measurements than either component in isolation.

5.2 Experimental results
In this sectionwe apply SMILE to two real-world small scale datasets,
and discuss its performance, our findings, and directions for future
work.

Sensor network: First we consider a network of 11 Mica2 motes
placed randomly in a parking lot [37] 4. The maximum distance
between any two nodes is 10.57m. We consider received signal
strength (RSS) measurements between pairs (RSS is averaged over
20 packets). To estimate distance, we use the following log-distance
path loss model

𝑅𝑆𝑆 (𝑑) = 𝑃tx − 𝑃𝐿(𝑑0) − 10𝛾 log10 (
𝑑

𝑑0
) + N (0, 𝜎2) (7)

where 𝑃tx is the transmit power, 𝑃𝐿(𝑑0) is the path loss at a refer-
ence distance, and 𝛾 is the path loss exponent [31]. For this data,
use the model 𝛾 = 2.9 and 𝑃tx − 𝑃𝐿(𝑑0) = −49.12𝑑𝐵 for 𝑑0 = 1.
Given the ground truth location estimates, Fig. 11 shows that the
noise in this dataset has mean 0.35m with standard deviation 2.94.
4http://anrg.usc.edu/www/download_files/RSSLocalizationDataSet_11nodes.txt

Note that even though we believe this data to be in open space (all
LOS), seven links see a measurement error of greater than 5m.

Figure 12 shows the performance of GCN and SMILE on this
network, where we update the SMILE parameters to 𝜆 = 0.05, 𝜇 =

0.05, and𝑇 = 10 because the network is smaller. If we assume four of
these nodes are anchors, GCN achieves RMSE of 1.67 with threshold
5.2m, and SMILE achieves a comparable RMSE of 1.63 with 𝑘 = 3,
guessing 𝛽 = 11. These results are the average performance of 10
trials, and the best parameters for each algorithm were selected
empirically.

Robotic network: Secondly, we consider measurements from
a robotic network with 18 nodes, 13 of which are stationary bea-
cons at known locations, and 5 of which are mobile (legged and
wheeled) robots5. Each robot carries a Streamcaster 4200 from Sil-
vus Technologies, which are also used as beacons. We consider
a set of pairwise RSS measurements from a single timestamp of
robotic exploration. They nodes are spread over a large area in an
underground limestone mine with distances between nodes of up
to 341 meters. Ground truth positions are available via a simultane-
ous localization and mapping algorithm, and we assume these are
accurate [7]. Estimates of whether links are LOS is also available
via a LiDAR-based predictive model [10]. Fig. 13 plots the error
density for LOS, NLOS, and missing links from this data, where we
note that unfortunately only 14% of measurements are available
and LOS. We augment this real dataset with simulated data such
that missing measurements are sampled from a zero-mean Gauss-
ian with standard deviation equivalent to the observed LOS noise
(𝜎 = 36.13).

Fig. 14 show the results of our approach on this realistic dataset,
where edges indicate error in distance. GCN achieves RMSE of 45.8
on this simulated data with threshold 110, while SMILE achieves an
improved RMSE of 34.22 for 𝑘 = 17. These results are the average
performance of 10 trials, and the best parameters for each algorithm
were selected empirically. We observe that the average localization
error for unknown nodes is roughly the standard deviation of the
noise on LOS links, while the standard deviation of NLOS error is
59.60 (mean 30.14m). This indicates that SMILE is able to achieve
localization accuracy comparable to a distance-based model on a
single LOS link for all nodes, even those which have many NLOS
neighbors, and shows promising performance.

During robotic exploration, these anchors were deployed au-
tonomously [15, 28]. This means anchors are only located in places
the robots have already visited, while the exploration objective
encourages the robots to move away from these anchors. In fact,
the exploring robots then tend to be outside the convex hull de-
fined by the anchors. This configuration appears to stress network
localization, especially for smaller networks with significant noise.
Prior work exists in robotic motion which minimizes localization
uncertainty [6, 11], and network localization algorithms which
specifically address this geometric setting may be an interesting
direction for future work.

5.3 Discussion
One advantage of SMILE is that we compute Y which approximates
the sparsity structure of S. Therefore, we can use this method to

5https://github.com/NeBula-Autonomy
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Figure 10: Ablation study with 𝜎 = 0.3, 𝜃 = 5. Top row, left to right: classical MDS achieves RMSE 1.49, de-noising via PSVD
improves RMSE to 0.25, and sparse matrix inference further improves RMSE to 0.19. Bottom row, left to right: LLE with direct
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Figure 11: Measurement error for 11 node wireless sensor
network outdoors, comparing distance from RSS (Eq. 7) with
ground truth.

estimate which links are NLOS and where walls, obstacles, or other
potentially adversarial sources of attenuation may be present. This
means SMILE could be useful as a complementary modality for
simultaneous localisation and mapping (SLAM) algorithm for multi-
robot systems, and has potential applications in robotic exploration
for disaster mitigation and military applications [10].

While it is impossible to unique localize a network in the ab-
sence of anchors (given the possibility of translations and rotations),
anchor-less localization problems have significant overlap with
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Figure 12: Localization accuracy of GCN (RMSE of 1.6) and
SMILE (RMSE of 1.63) on the sensor network. Edges in the left
graph represent observed distances less than 𝜃GCn. Edges in
the right graph connect each node 𝑖 to its nearest neighbors
𝑁𝑁 (𝑖).

other useful signal processing problems. In face, SMILE could be
directly applied to anchor-less localization problems by replacing
lines 29-30 in the algorithm with the embedding step of conven-
tional LLE, as LLE typically does not require anchors [30]. Thus,
our approach may be applicable to problems outside the sensor net-
works domain. For instance, consider a matrix of user data, where
each row corresponds to a specific user and a small number of

9



100 50 0 50 100 150 200 250
Measurement error (m)

0
2
4
6
8

10
12
14

Fr
eq

ue
nc

y

LOS
NLOS
Missing

Figure 13: Measurement error for 18 node robotic network
in GPS-denied environment.
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Figure 14: Localization accuracy of GCN (RMSE 45.8) and
SMILE (RMSE 34.22) on the robotic network. Edges indicate
error in distance.

users obfuscate their data with the addition of non-negative noise.
SMILE could be applied to the problem of determining how similar
users are, by extracting the sparse obfuscation matrix and finding
an embedding of users in low-dimensional space.

We considered a modification to LLE in which we replace the
𝑘 nearest neighbors with the 𝑛𝐴 anchors as reference points. We
expected this would minimize the risk of errors propagating, as
each of the anchors is at a known location. Interestingly, we did
not see an improvement in performance. Similarly, we considered a
modification to the sparse matrix inference approach in which we
project X and Y on to the space of matrices which are non-negative
and symmetric. We expected this would improve performance as D
and S are non-negative and symmetric. Preliminary experiments did
not demonstrate a significant improvement in localization accuracy,
and in some cases accuracy suffered. Low-rank matrix approxima-
tion which constrains the solution to have the characteristics of
Euclidean distance matrix, without sacrificing localization accuracy,
is a direction for further study.

Following [36], we considered the probability of each link being
NLOS as independent. However, in realistic settings there will be
some correlation based on the structure of the environment itself.
For example, in Fig. 1 we illustrate 20 nodes in an indoor setting
with three rooms and one hallway. Nodes in the smaller rooms
are more subject to NLOS attenuation, given their proximity to
two walls. Currently, we estimate that links with the weakest RSS

are most likely to be NLOS. However it may instead be the case
that certain nodes are more likely to have NLOS links, is in Fig. 1.
Exploiting patterns like this in the structure of S is an interesting
direction for future work.

6 CONCLUSION
We present Sparse Matrix Inference and Linear embedding, a novel
network localization algorithm which is robust to noisy, NLOS,
and missing measurements. Our approach outperforms the state of
the art on large, simulated networks, achieving high localization
accuracy with low computation times. We see promising results
for small networks in real-world settings, and in the future we’d
like to collect real-world data for larger networks. Other direc-
tions for future work include extensions to make the approach
distributed [4, 12], or consider time-series RSSI measurements and
Bayesian estimation [20, 35].
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