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A Queue-Stabilizing Framework for Networked Multi-Robot
Exploration

Lillian Clark1, Joseph Galante2, Bhaskar Krishnamachari1, and Konstantinos Psounis1

Abstract— Motivated by planetary exploration, we consider
the problem of deploying a network of mobile robots to
explore an unknown environment and share information with
a stationary data sink. The configuration of robots affects both
network connectivity and the accuracy of relative localization.
Robots explore autonomously and can store data locally in
their queues. When a communication path exists to the data
sink, robots transfer their data. Because robots may fail
in a non-deterministic manner, causing loss of the data in
their queues, enabling communication is important. However,
strict constraints on connectivity and relative positions limit
exploration. To take a more flexible approach to managing these
multiple objectives, we use Lyapunov-based stochastic optimiza-
tion to maximize new information while using virtual queues to
constrain time-average expectations of metrics of interest. These
include queuing delay, network connectivity, and localization
uncertainty. The result is a distributed online controller which
autonomously and strategically breaks and restores connectivity
as needed. We explicitly account for obstacle avoidance, limited
sensing ranges, and noisy communication/ranging links with
line-of-sight occlusions. We use queuing theory to analyze the
average delay experienced by data in our system and guarantee
connectivity will be recovered when feasible. We demonstrate
in simulation that our queue-stabilizing controller can reduce
localization uncertainty and achieve better coverage than two
state of the art approaches.

I. INTRODUCTION

Robotic exploration is an integral component of future
space missions, with applications including lunar regolith
disturbance measurements [1] and planetary surface envi-
ronment characterization [1], [2], [3]. Many common ap-
proaches to exploration are frontier-based [4], [5], while
more recent approaches are based in information theory
[6], [7]. Networked multi-robot systems provide advantages
for exploration in that they can coordinate to improve effi-
ciency [8], cooperate to improve localization with relative
range measurements [9], [10], and provide data relaying
capabilities to extend the effective exploration range under
connectivity constraints [11]. Ensuring the availability of
communication links and sufficient relative range measure-
ments for connectivity [11], [12], [13] and localizability [14],
[15], [16] are well-researched objectives, and previous work
has considered the trade between task-specific goals and
increasing connectivity [17], [18] or task-specific goals and
reducing location uncertainty [19].
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Less well-researched are exploration strategies for appli-
cations where intermittent connectivity is sufficient or even
intentional, e.g. space exploration [20]. Consider a lunar
lander and several scouting robots deployed to map the
surrounding site. Assuming the robots act autonomously,
it may be beneficial to sacrifice instantaneous connectivity
in order to explore areas beyond line of sight or out of
range. However, the lunar lander must receive all data in
order for the data to be transferred to Earth. We present
a novel distributed controller that balances exploring with
strategically restoring connectivity to a stationary data sink
from time to time to prevent data loss.

Several approaches to intermittent connectivity are ex-
plored in the literature, and a survey of communication-
restricted multi-robot exploration is provided in [21]. Some
take a periodic approach [22], others are rendezvous-based
[23], and others are role-based and assign connectivity and
exploration as distinct tasks [24], [25]. Banfi et al. [26] intro-
duce a recurrent connectivity strategy in which a connected
deployment configuration is chosen and robots may lose
connectivity en route to this configuration. This approach
requires centralization, or a high level of overhead.

Benavides et al. [27] derive a multi-objective function
which weighs discovering new information with maintaining
connectivity and adapts to a human operator’s input on the
importance of each objective. This approach is advantageous
in that it does not require specifying roles or deciding
rendezvous locations. But this approach assigns a utility
to connectivity which does not depend on whether or not
there is new information to share. The closest work to
ours is the work by Spirin et al. [28], which introduces a
constraint on the ratio of information at the data sink and a
crude approximation of total information across all mobile
robots. Based on this constraint, robots choose a role-based
controller (explore or return to the data sink). The authors
show desirable emergent behavior, but their controller does
not consider the location of neighboring robots so they are
limited to relaying opportunistically.

A. Statement of Contributions

Our approach has the advantages of both balancing com-
peting objectives with weights proportional to the specified
importance (as in [27]), and adapting to the amount of new,
untransferred data resulting in desirable emergent behavior
(as in [28]). We present a rigorous methodology to unify
these approaches using concepts from stochastic network
optimization theory, which concerns the design of controllers
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to maintain the stability of queues [29]. The crux of our
approach is that a backlog in the data queue puts pressure
on the robot to transmit this data and therefore move to
recover a communication path to the data sink. Remarkably,
our approach is flexible enough to meet constraints on
the time-average expectation of any bounded metric (not
just data queue size), so long as a feasible solution which
satisfies the constraints exists. Thus the same approach may
additionally control connectivity and localization uncertainty.
In this paper, we present a specific controller designed for
these objectives, but the queue-stabilizing framework could
generalize to many metrics.

We introduce a Lyapunov function which depends on the
amount of untransferred data, the time this data has been
waiting in the queue, and metrics on connectivity and localiz-
ability, which are functions of the network configuration and
can be estimated locally. From this we derive a distributed,
online controller which balances maximizing new infor-
mation and stabilizing this Lyapunov function. Previously,
myopic/greedy algorithms have been overlooked in this
setting since periodic, rendezvous-based, and deployment-
based approaches all require optimizing over possible paths
[22]. Our controller provides the distinct advantage that
computations are over a single time step, yet we can make
formal claims about the time-average behavior. We analyze
a simple form of our queue-stabilizing controller and prove
that the average queuing delay is bounded, and each robot
is guaranteed to recover connectivity when feasible. We then
demonstrate in simulation that our controller can reduce
localization uncertainty and improve coverage over state of
the art approaches.

B. Preliminaries
A Lyapunov function is a scalar function used to analyze

stability, and Lyapunov drift is the change in this function
over one time step [29]. Lyapunov techniques have a long
history in the field of control theory, but the idea of mini-
mizing Lyapunov drift for queue stability in networks was
first presented by Tassiulas and Ephremides in [30]. This
work resulted in max-weight scheduling, an algorithm which
stabilizes a network whenever possible and only requires
knowledge of the current network state. In brief, the max-
weight algorithm observes channel conditions and current
queue backlogs, and decides which queue(s) to serve. The
decision maximizes a weighted sum of the service rates,
where the weights are proportional to a priority coefficient
multiplied by the size of the queue. This highlights the
critical components of a queue-stabilizing controller: the
static priorities decided by the user, the size of the queue
which reflects previous decisions made by the system, and
the state of the system in that moment. With no knowledge
of the future, this controller provably achieves stability,
meaning the time-average queue size is bounded. In [31],
Neely introduces the virtual queue terminology to address
problems like maximizing throughput subject to average
power constraints.

In our previous works [32], [33], we apply ideas from
queue-stability to the related problem of robotic message

ferrying, in which mobile robots are controlled to transfer
data from stationary sources to stationary sinks. In [33], we
present a centralized solution to robot allocation and de-
ployment when data is generated unpredictably at stationary
sources. In this work we instead consider the setting where
data is the result of exploratory behavior.

II. PROBLEM FORMULATION

The objective is to design a distributed controller for
a multi-robot system where each robot r in the set of
robots R can collect information about its environment
and store this information in a local map mr. Each robot
can communicate with any robot i for which link qual-
ity f cr,i is above some threshold θc. Map information is
shared over these communication links such that mr ←
mr ∪ mi for each pair (r, i) for which f cr,i > θc. Robots
also share their time-stamped location estimate, which times
out after tto time steps. This means a robot has an absolute
location estimate for any robot it has communicated with
(through one or more hops) in the last tto time steps, and
we call this set of robots Cr. Each robot r can also collect a
range measurement between itself and any robot i for which
link quality f lr,i is above some threshold θl. These measure-
ments containing range estimates and robot identifiers can be
obtained, for example, via ultra-wideband radio and used for
relative localization [10], [9]. Note that since communication
and localization may use different technologies, f c and f l

may not have the same dependence on distance and may
have different levels of noise. We assume the presence of
a stationary data sink D at position xD equipped with the
same communication and ranging capabilities as the robots.
The goal of the system is to create a complete map at the
data sink mD.

A. Distributed Online Control

We assume time is discretized, t ∈ {0, 1, ...}. The state
Sr(t) captures what is known by robot r at time t: the
position of the robot xr(t), the robot’s map mr(t), and the
estimated position of all robots xi(t) in the set Cr(t). At each
time t, the controller deployed on a single robot observes the
current state and makes a myopic decision αr(t) choosing
from the discrete finite set of locations which can be reached
in the next time step, Ar(Sr(t)). We assume perfect obstacle
detection, therefore we limit the decision space to obstacle-
free locations and handle obstacle avoidance trivially.
Sr(t+1) depends on the previous state Sr(t) and decision

αr(t). It also depends on unknowns in the environment and
decisions αi(t)∀i ∈ R; therefore, the transition probabili-
ties between states are unknown. We design a distributed
controller which makes online decisions αr(t) based solely
on the observable state Sr(t) and memory stored in queues
qr(t), Dr(t), Qr(t), and Zr(t). We will define these queues
in Sec. III-B, III-C, and III-D.

B. Probability of Failure

In this setting, robots operate in harsh environments and
may experience failures caused by wear and tear on the sys-
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tem or unforeseen hazards. In multi-robot systems, robot fail-
ure is typically modeled by a constant hazard rate, γ, and a
probability of failure given by Pr[Robot r fails at time t] =
γe−γt [34]. To consider robots which are constrained by a
given resource (e.g. fuel), we could define the probability
of failure as a function of the remaining quantity of that
resource, rather than time. For example, in [24] the authors
propose an exploration strategy which considers remaining
battery life.

III. QUEUE-STABILIZING CONTROLLER

In this section we describe the four objectives of our
controller: (1) the task-specific goal of maximizing new
information, (2) keeping the average queuing delay low, to
prevent data loss upon failure by increasing the network re-
liability, (3) maintaining overall network connectivity, which
encourages the robots to act as relays, and (4) maintaining
network localizability, which keeps location uncertainty low
to ensure new information is useful. We then formulate the
constrained optimization problem and use Lyapunov drift
minimization to derive our multi-objective queue-stabilizing
controller. Finally, we conclude this section with a theoretical
analysis of the controller’s performance.

A. Information-theoretic Exploration

The objective of information-theoretic exploration is to
minimize entropy in the map by maximizing the mutual
information gained with new sensor measurements [6]. We
represent the environment as an occupancy grid where cells
are occupied or free with some probability. The random
variable Xi describes the probability that the ith cell is
occupied and the random variable Zi is associated with
the observation of the ith cell, where cells take on values
in {0, 1}. Our sensor model is therefore the conditional
probability Pr(Zi|Xi). Prior to making an observation, each
cell is associated with an entropy which depends on the map
thus far, H(Xi|mr). The entropy after taking observation zi
is H(Xi|mr, Zi = zi). The value of observing the ith cell
is given by the mutual information or reduction in entropy,
I(Zi;Xi|mr) = Hi(Xi|mr) − Hi(Xi|mr;Zi). We assume
Xi are independent (as in [6]). We let Z(xr) describe the
set of map cells which are within the sensor coverage of the
robot, and we define the expected information gain associated
with a robot position xr given map mr as I(xr;mr) =∑
i∈Z(xr) I(Zi;Xi|mr).
The local information-theoretic controller presented in

[19] maximizes I(αr(t);mr(t)) subject to αr(t) ∈ Ar(t)
where Ar(t) is the set of map cells accessible within one
time step. While this one-step control strategy may not lead
to optimal trajectories over multiple time steps, it directs
the robot towards increasing information gain and constantly
adapts to new information.

This controller, like other local search methods, suffers the
risk of getting stuck or oscillating in plateaus, areas where
all location decisions αr(t) ∈ Ar(t) result in the same value
of I(αr(t);mr(t)). To prevent this undesirable behavior, we
present a modification: we define the frontier goal, xfr (t),

as the closest point which offers positive information gain,
breaking ties according to maximum information gain and
subsequent ties arbitrarily. Now our information-theoretic
objective is to minimize the distance to the frontier goal,

Y (αr(t)) =
∥∥αr(t)− xfr (t)

∥∥
mr(t)

(1)

where notation ‖x1 − x2‖mr refers to the length of the
shortest path from x1 to x2 in the map mr. This will
direct the robot towards the closest point which increases
information.

B. Stabilizing the Delay Queue via Network Reliability

We define the communication graph at robot r at time t,
Gcr(t), to have vertices representing r, data sink D, and other
robots in the set Cr(t). An edge in this graph eij represents
the probability of successful communication between nodes
i and j. Assuming link quality f cij falls off exponentially
with distance, the probability of successful communication
has the shape of a sigmoid function [35] and can be modeled
as

eij =

{
0 if non-line-of-sight

1

1+e
η(‖xi−xj‖−dθc )

otherwise
(2)

where dθc is the distance at which E[f cij ] falls below θc, η
defines the steepness of the sigmoid, and we assume radio-
frequency-impermeable obstacles such that the probability is
zero if an obstacle obstructs the line of sight path.

We assume that links fail independently. We define pij
to be the probability that at least one successful path exists
between vertices i and j, which is referred to as the two-
terminal network reliability and is known to be NP-hard to
compute for a general graph [36], [37]. After enumerating
the set of all simple paths from i to j we can exactly compute
pij by constructing a sum of disjoint products [38]. Let
πkij be the event path k exists which connects i → j. The
probability Pr[πkij ] is the product of the edge probabilities
which comprise the path. Let φij be the event any path
i→ j exists, which is the Boolean sum over all simple paths
between i and j. To calculate pij = Pr[φij ] we employ the
approach presented in [39] to transform a set of simple paths
into a set of disjoint events. We then sum the probabilities
of these disjoint events. This calculation is intractable as the
number of robots increases, and we discuss an approximate
heuristic for larger networks in Sec. IV-C.

We now introduce a queue qr(t) of untransferred data
stored at robot r with the following dynamics:

qr(t+ 1) = max[qr(t) + I(αr(t);mr(t))− b1(αr(t)), 0]
(3)

where 1(αr(t)) indicates that a successful communication
path exists between αr(t) and data sink D, and b is the
(constant) finite capacity or quantity of information which
can be transmitted in a single time step. Assuming each
robot has finite memory, the queue size is bounded by
qr(t) ≤ qmax, and any additional new information will
not be stored. We assume that signal propagation time is
negligible, so the robot transfers its data and receives an
acknowledgement within one time step.
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Intuitively, our objective is to minimize the time that data
waits in the queue to be transferred. Following [40], we
introduce a threshold on the average delay θd, and a virtual
delay queue with the following dynamics:

Dr(t+ 1) = max[Dr(t)− θdb1(αr(t)), 0] + qr(t) (4)

where we have carefully ensured that if qr(t) > 0, the delay
queue is positive. Note that in this paper we use capital letters
to differentiate virtual queues from real queues of data. The
delay queue grows with each time step that the data queue
is non-empty, and decreases when 1(αr(t)) = 1. The goal
of our controller is to achieve mean rate stability, defined
as limt→∞

E[Dr(t)]
t = 0 with probability 1. In Sec. III-E,

we analytically show that actions which maximize prD, the
probability that at least one path exists between r and D,
will stabilize this queue.

C. Connectivity

Intuitively, we expect that if each robot maximizes prD,
the likelihood it can communicate with the data sink, the
result will be a network with high connectivity. Additionally,
our framework allows us to also control network connectivity
explicitly. Closely following [11], we introduce a weighted
Laplacian matrix, Lr. This matrix is directly constructed
from the adjacency matrix, whose elements are given by
f ci,j . The second-smallest eigenvalue of this matrix, λ2,
is known as the Fiedler value and quantifies the algebraic
connectivity of the graph [41]. If and only if λ2 > 0, the
graph is connected. A controller designed to increase λ2 will
result in well-connected graphs with several paths from all
robots to the data sink. We use notation λ2r(αr(t)) to denote
the Fiedler value of the Laplacian if robot r makes location
decision αr(t). Note that λ2r indicates only the connectivity
of Gcr(t), the graph available to robot r. Since each Gcr(t)
contains the data sink, if each graph is connected, then the
overall network is connected. Thus we can take actions which
increase connectivity in a distributed fashion. Rather than
constraining λ2r at all times, we take the following more
flexible approach.

Consider Qr, a virtual queue with the following dynamics:

Qr(t+ 1) = max [Qr(t) + (θλ − λ2r(αr(t))), 0]. (5)

Stabilizing Qr(t) will result in a time-average expectation
of λ2r which is greater than or equal to the constraint θλ.
Formally, λ2r = limt→∞

1
t

∑t−1
τ=0 E[λ2r(τ)] ≥ θλ.

D. Localizability

Creating accurate maps requires accurate localization, but
algorithms which result in efficient exploration may not
result in high localizability. The trade between minimizing
map uncertainty and minimizing localization uncertainty was
previously explored by Bourgault et al. for a single robot
[19]. In [14], [15], [16], the authors consider localizability
in robotic networks, deriving results from rigidity theory.
Briefly, rigidity is a property of a graph which means that
the edges present are enough to constrain the shape of the
graph [42].

However, even rigid graphs can experience ambiguities
which lead to challenges in robotic network localization [43].
Therefore we consider the Cramer-Rao bound (CRB) as a
metric, which provides a lower bound on the covariance
of any unbiased location estimator [44]. The estimator can
use received signal strength, time of arrival, or angle of
arrival. Moreover, CRB has been shown to accurately predict
performance [45] and is closely related to other relevant
metrics like the geometric dilution of precision [44]. To
calculate the CRB in two dimensions, we first calculate the
Fisher Information Matrix Fr, a 2×2 matrix whose elements
are given by

Fr[i, j] =
1

(cσT )2

∑
k∈Cr∪D

(xir − xik)(xjr − xjk)

dk
2 (6)

where dk =
√

(x1r − x1k)2 + (x2r − x2k)2 and we assume
time of arrival measurements. In the above equation, c is the
speed of light, σT is the variance of the time delay error,
and (x1k,x2k) are the coordinates of robot k. Fr and the
symmetric rigidity matrix are closely related [14].

The Cramer-Rao bound matrix is the inverse of Fr and
gives a lower bound on the covariance (uncertainty) of any
unbiased estimator. We want this bound to be small, and so
following [14] we constrain the trace of this matrix, using
notation CRBr = tr(F−1r ). We define a virtual queue Zr(t)
with the following dynamics:

Zr(t+ 1) = max [Zr(t) + (CRBr(αr(t))− θCRB), 0] (7)

where CRBr(αr(t)) denotes the Cramer-Rao bound for robot
r reflecting location decision αr(t), and θCRB is a desired
threshold on this bound. Stabilizing this virtual queue will
result in a desirable time-average expectation. Formally,
CRBr = limt→∞

1
t

∑t−1
τ=0 E[CRBr(τ)] ≤ θCRB . Note that

for certain configurations the CRB is unbounded [43]. To fit
our optimization framework, in implementation we enforce
CRBr = min (CRBr, 1ε ). We can choose arbitrarily small ε,
where the fraction of time the system spends in undesirable
configurations is bounded by εθCRB . During this time, state
estimation algorithms which perform filtering can rely on
odometry and features in the environment until a desirable
configuration is recovered.

E. Lyapunov Optimization

We can now succinctly formulate an optimization problem.

Minimize: Y (8)

Subject to: λ2 ≥ θλ2 (9)

CRB ≤ θCRB (10)
D(t) is mean rate stable (11)
α(t) ∈ A(t) ∀t ∈ {0, 1, ...} (12)

where Y = limt→∞
1
t

∑t−1
τ=0 E[Y (τ)], Y (t) is the distance

to new information (Eq. (1)), and the expectation is over S(t)
and α(t). The goal is to choose an action in the discrete, finite
action space to minimize the distance to new information
subject to constraints on connectivity and localizability, all
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while keeping the delay queue stable. We assume throughout
that limits are well-defined, and analyze behavior in the
absence of failures. We have dropped the subscript r for
readability throughout this and the following subsections.

Let Θ(t) = [D(t), Q(t), Z(t)] be a concatenated vector
of the queues defined in Eq. (4), (5), and (7). We assume
throughout that the initial queue values are 0. We define the
Lyapunov function,

L(Θ(t)) =
1

2
kqD(t)2 +

1

2
kQQ(t)2 +

1

2
kZZ(t)2 (13)

as a scalar indicator of the size of this vector, where kq ,
kQ, and kZ are weights on the priority of each objec-
tive. The one-step conditional Lyapunov drift is given by
∆(Θ(t)) = E[L(Θ(t + 1)) − L(Θ(t))|Θ(t)]. Greedily min-
imizing ∆(Θ(t)) + kY E[Y (t)|Θ(t)], the drift-plus-penalty
expression, will lead to mean rate stability for all queues
[29]. Here, kY ≥ 0 is a weight on the priority of exploration.

Substituting our queue dynamics gives

∆(Θ(t)) + kY E[Y (t)|Θ(t)] ≤ B + kY E[Y (t)|Θ(t)]

+E[kqD(t)(q(t)− θdb1(t)) + kQQ(t)(θλ2 − λ2(t))

+kZZ(t)(CRB(t)− θCRB)|Θ(t)]

(14)

where 1(t) indicates a communication path exists for this
robot at time t, and a constant B upper bounds the expecta-
tion of

(θλ2 − λ2(t))2

2
+

(CRB(t)− θCRB)2

2
+
q2max

2
+

(θdb)
2

2
(15)

given Θ(t) and holds for all t since we have enforced a
bound on CRB and the Fiedler value of a graph is bounded.

We opportunistically minimize the expectations on the
righthand side of Eq. (14) which allows our algorithm to
be online. Each robot r assumes the probabilities of deci-
sions αi 6=r(t) are uniformly distributed, therefore E[xi(t +
1)|xi(t)] = xi(t). At time t, our distributed controller
observes S(t), q(t), D(t), Q(t), and Z(t) and chooses
α(t) ∈ A(t) to minimize

kY Y (α(t), S(t))

+kqD(t)(q(t)− θdbprD(α(t), S(t))

+kQQ(t)(θλ2
− λ2(α(t), S(t)))

+kZZ(t)(CRB(α(t), S(t))− θCRB)

(16)

where the expectation that a path exists from r to D is prD
and we have reintroduced the inputs α(t), S(t) to emphasize
which variables are functions of the decision and state. We
have derived a distributed controller which captures each
of the four objectives enumerated at the beginning of this
section, and can flexibly focus on one or more of these goals
at a given time depending on which term dominates Eq. (16).

F. Analysis

The problem described by Eq. (8-12) is feasible if there
exists any arbitrary control policy, or sequence of decisions,
which satisfies all three constraints. In this case, the optimal
value of Y achieved by a one-step local controller can be

achieved arbitrarily closely by the controller given by Eq.
(16). Intuitively, large values of kY cause the controller
to approximate the information-theoretic control strategy
presented in Sec. III-A while meeting the time average con-
straints. Similarly, if the problem is feasible, the constraints
can be achieved arbitrarily closely. The proof of this follows
directly from the proof given by Neely in Appendix 4.A [29].

1) Bounded Delay: If D(t) is stable, queuing theory gives
that the rate at which D(t) decreases is at least the rate
it increases, or qav ≤ θdb1

av, where the notation xav =
limt→∞

1
t

∑t−1
τ=0 x(τ) and we assume limits are well-defined

[40]. Little’s law states that the size of the queue equals the
average delay dav times the rate at which the queue increases,
or qav = davIav [29]. Substituting gives davIav ≤ θdb1

av.
From this we can derive a bound on the average queuing
delay dav ≤ b1av

Iav θd. This states that any controller which
stabilizes D(t) achieves an average wait time of data in q(t)
within a multiplicative constant of the delay threshold θd.

When we restrict our analysis to the simple case of two
competing objectives, setting kQ = kZ = 0, we claim that
the controller given by Eq. (16) will result in b1av = Iav, and
prove by contradiction. If Iav > b1av, then q(t) > qmax for
sufficiently large t, which is not possible. If Iav < b1av, then
there exists an alternate controller which achieves a higher
Iav (i.e. a lower Y ) and yet still maintains queue stability.
Equivalently, at some time t an action exists which results in
a smaller value of the expression given by Eq. (16). However,
by construction our controller minimizes Eq. (16). Therefore
b1av

Iav = 1 and the bound on average wait time of data in q(t)
using our controller is in fact θd.

2) Recovering Connectivity: In the simple case of two
competing objectives, connectivity will always be recovered.
If q(t) = 0, our controller will solely minimize Y (t), which
will inevitably result in q(t) > 0 assuming a path exists to a
frontier. When q(t) > 0, there exists τ > t where 1(τ) = 1
because otherwise D(t) would grow unstable. Our controller
will recover connectivity in order to stabilize D(t) assuming
it is feasible.

G. Local Optima and Limit Cycles

In general, when kQ, kZ ≥ 0, our queue-stabilizing
framework supports additional objectives and we cannot an-
alytically guarantee connectivity is recovered because of the
possibility of local optima and limit cycles. If αr(t) = xr(t)
strictly minimizes Eq. (16), the robot can get stuck. When
this occurs we implement the following recovery control
strategy: While E[f cr,D] ≤ θc, instead choose αr(t) ∈ Ar(t)
to minimize ‖αr(t)−D‖mr(t). This moves the robot along
the shortest path towards the data sink until it is close
enough for direct communication, at which point the robot
switches back to the nominal controller. We also switch to
this recovery controller when qr(t) = qmax, so the robot
necessarily recovers connectivity when the data queue is full.

When kQ > 0 or kZ > 0, the robot may sacrifice
exploration even when the data queue is empty in order to
increase connectivity or localizability. In fact, as we increase
the gains kQ and kZ , the time averages of λ2r and CRBr will
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Fig. 1. Simulated environments with obstacles (purple), robots (yellow),
and data sink (red). Left: 4 robots in 30x30 space with 20 obstacles. Right:
With 75 obstacles. Additional experiments considered 8 robots and 50x50
space, and results are summarized in Table I.

converge more quickly to θλ2
and θCRB [29]. In this case,

the robots will converge to or oscillate within configurations
which meet the constraints, much like a strictly constrained
exploration strategy would [13]. These stable limit cycles can
be avoided by loosening the constraints or decreasing kQ, kZ
at the cost of reduced connectivity and localizability. In the
following section, we observe this in simulation and discuss
the performance of our queue-stabilizing controller.

IV. PERFORMANCE RESULTS

Fig. 1 shows two simulation environments with obsta-
cles which prevent communication and ranging. We assume
robots start in the vicinity of the data sink and can move into
adjacent free cells. Robots have a finite sensing radius of 1.5
with perfect sensing (Zi = Xi) and an expected transmit ra-
dius dθc = 4 (all units in robot widths). Accurate localization
is key to exploration and in the absence of GPS, beacons,
or easily detectable landmarks in the environment, relative
localization performance is important. We use the Cramer-
Rao bound to evaluate uncertainty of relative localization,
but for simplicity assume perfect/deterministic movement in
simulation. We assume Pr(Xi = 0) = Pr(Xi = 1), so the
number of cells visited is the reduction in map entropy. We
use γ = 100, θd = 10, θCRB = 200, and θλ2

= 0.1. Source
code, other parameter values, and accompanying videos for
all experiments are available on GitHub [46].

A. Compared Approaches

We introduce two simple approaches and two competitive
approaches and compare these to our queue-stabilizing (QS)
controller.

1) Unconstrained/information-theoretic (UN): Robots
choose αr(t) ∈ Ar(t) to minimize Y (αr(t)).

2) Strictly Constrained (SC): Robots limit their action
space to Ar(t) = {αr(t) : CRBr(αr(t)) ≥ θCRB and
λ2r(αr(t)) ≥ θλ2

}. Then robots choose αr(t) ∈ Ar(t) to
minimize Y (αr(t)), and do not move if Ar(t) is empty.

3) Time Preference (TP): This controller presented by
Spirin et al. uses a target ratio ρ comparing the queue to
the map size [28]. If 1 − qr(t)/|mr(t)| ≥ ρ, where |mr(t)|
is the number of visited cells, robots choose αr(t) ∈ Ar(t) to
minimize Y (αr(t)). Otherwise robots choose αr(t) ∈ Ar(t)
to minimize ‖αr(t)−D‖mr(t). In the absence of a direct

Fig. 2. Map cells known at data sink over time for each approach in IV-
A, averaged over six independent trials, with the following parameters: QS
(our novel approach): Solid - kq = 0.005, kQ = 0, kZ = 0, kY = 100,
Dashed - kq = 1000, kQ = 0, kZ = 0, kY = 100, TP: Solid - ρ = 0.35,
Dashed - ρ = 0.99, MO: w1 = 10, w2 = 0.1, w3 = 0.1, w4 = 100.

communication path to the data sink, robots transfer the
contents of qr(t) to a neighboring robot i if f cr,i > θc
and i is closer to D than r. To provide a fair comparison,
we implement this relaying for qr(t) and Dr(t) in our QS
approach as well.

4) Multi-objective (MO): We modify the approach of
Benavides et al. [27], which weighs connectivity against
exploration, to consider our objectives and be suited to
local decisions. Robots choose αr(t) ∈ Ar(t) to minimize
w1Y (αr(t))−w2prD(α(t))−w3λ2(α(t))+w4CRBr(α(t)),
where w1, w2, w3, w4 > 0 are priority weights.

B. Performance Analysis

1) Coverage: Fig. 2 shows the average map size at
the data sink over time for the set of parameters which
maximizes final coverage (solid lines) for each approach
in the world shown in Fig. 1 (left). QS outperforms UN,
SC, and MO and slightly outperforms TP with respect to
map coverage. We depict QS here with kQ = kZ = 0,
i.e., only the delay queue is stabilized. This causes QS and
TP to have similar emergent behavior [28], and allows us
to closely compare our contribution to the state of the art.
One subtle difference between the two is that QS maximizes
prD, explicitly considering the location of our neighbors and
taking multi-hop communication into account, whereas TP
simply minimizes ‖αr(t)−D‖mr(t). This is likely why QS
performs better. Note that as we increase ρ, kq (Fig. 2,
dashed lines), we see smoother curves caused by incremental
data transfer. In cluttered and larger environments where
communication is severely limited, increasing connectivity to
allow incremental data transfer significantly improves perfor-
mance relative to UN (by up to 99% and 88% respectively).
This finding emphasizes that the choice of kq, kQ, kZ , kY
which maximizes coverage depends on characteristics of the
environment (see Table I).

2) Localizability: In Fig. 3, we plot localizability against
coverage. We use the time spent below the uncertainty
constraint as a localizability metric. Since we have bounded
the CRB, this is a more meaningful metric than average CRB
but follows the same trend. We see that high localizability
can hurt coverage, as discussed in Sec. III-G. QS can improve
localizability over TP and UN without sacrificing coverage,
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Fig. 3. Average percent of time spent with CRB below θCRB per robot
against number of map cells known at data sink for 4 robots in 30x30 space
with 20 obstacles. Each point is the average performance of 6 trials, and
ideal is at the top right. We show more points for the more parameterized
approaches (MO and our novel QS), while SC and UN are captured by a
single point because they do not depend on parameters.

Fig. 4. QS connectivity and localizability performance with and without
stabilizing the relevant virtual queues. Left: Average λ2D against coverage.
Right: Average percent of time spent with CRB below θCRB per robot against
coverage. Notation ¬kQ indicates kQ = 0, and in both plots ideal is at the
top right.

and improves coverage over SC without sacrificing local-
izability. MO can achieve the highest localizability (when
minimizing CRB is the sole or primary objective), but suffers
with respect to coverage from not adapting to the amount of
untransferred data.

3) Role of virtual queues: Actions which stabilize Dr(t)
and Qr(t) both result in increased connectivity. In Fig. 4
we plot average λ2D against map coverage, noting which
of these virtual queues was stabilized. Interestingly, here
connectivity appears more correlated with kq than kQ. This
indicates that stabilizing the delay queue, which explicitly
consider multi-hop communication, does encourage overall
network connectivity. We also plot localizability against
coverage, noting whether Zr(t) is stabilized. As expected,
kZ > 0 is highly correlated with localizability performance.

C. Additional Experiments

In order to scale to larger networks, since exact calculation
of prD grows intractable as the size of the network increases,
we suggest a closely related metric. The k-hop-connectivity
of vertices i and j in a graph is the weighted number of
paths i → j of k hops or fewer, where weights indicate
probability of success along the path [11]. In Fig. 5 we
demonstrate results for eight robots using 8-hop-connectivity
as a heuristic, and QS again slightly outperforms TP with

Fig. 5. Average percent of time spent with CRB below θCRB per robot
against number of map cells known at data sink for 8 robots in 30x30 space
with 20 obstacles. Each point is the average performance of 6 trials using
8-hop-connectivity, and ideal is at the top right.

Environment TP: Max Cov. QS: Max Cov.
size # rob. # obs. ρ cov. kq kQ kZ kY cov.

30x30 4 20 0.35 608 0.005 0 0 100 685
30x30 8 20 0.5 786 0.005 250 0 100 813
30x30 4 75 0.7 602 0.01 5 0 100 635
50x50 4 50 0.85 689 0.005 125 0 100 691

TABLE I
SUMMARY OF RESULTS: MAXIMUM COVERAGE

respect to coverage and localizability.
We have also tested our queue-stabilizing controller in a

cluttered environment, and an environment with much larger
area. For the latter, we loosened the delay bound to θD = 50.
Our findings comparing the best coverage achieved by QS
relative to TP, the leading competitive approach, are briefly
summarized in Table I.

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel distributed controller for
multi-robot exploration which uses ideas from queue-based
stochastic network optimization to autonomously decide at
each time step, based on the current state of the system, how
to weigh network reliability, connectivity, localizability, and
information gain. We have demonstrated that this controller
can achieve better coverage than the state of the art, reduce
localization uncertainty, and result in desirable emergent be-
havior. We show that stabilizing a virtual delay queue allows
us to constrain the average time between collecting data and
transmitting it to the data sink, and extending this to meet
hard deadlines is a direction for future work. Other directions
for future work include revisiting the assumption of error-
free movement and studying the relationship between the
environment and gains kq, kQ, kZ , and kY . For a set of gains,
the system could be mathematically modeled as a Markov
chain [47], and a formal analysis could lead to interesting
results.
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