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Abstract—The multi-objective optimization problem which
considers the competing goals of privacy and utility, e.g. users
want location-based services but wish to keep their location
secret, frames the design of data obfuscation functions. A
theoretical treatment of this optimization over functional spaces
is possible under certain assumptions, e.g. considering the convex
privacy metric of mutual information between the true state and
an adversary’s estimate of that state, and treating obfuscation
functions as conditional probabilities specifying obfuscated data
given true data. When this analytical treatment of the problem is
not feasible or desirable, data-driven approaches like adversarial
learning can be used to design obfuscation functions. Generative
adversarial privacy, which leverages recent advancements in
generative adversarial networks, considers two players in a
minimax game: a privatizer that obfuscates data to minimize
the risk of inference attacks while preserving the utility of the
true data, and an adversary that infers sensitive information
from the obfuscated data. In this work we study both theoretical
and data-driven methods of approaching privacy-utility trades
and apply these methods in the context of spectrum sharing and
signal mapping.

I. INTRODUCTION

The collection of user data provides obvious benefits in
many contexts, e.g. personalized content, accurate predictions,
and coordinated resource sharing. However, these aggregated
datasets raise legitimate privacy concerns. Obfuscation mech-
anisms, in which the true state of users is masked in some
way, may be used to protect privacy at the expense of utility.
In this paper we define formal metrics for privacy and utility
and investigate the fundamental trade between the two.

We consider two approaches, the first of which is formal
optimization. For the applications we consider, it is often the
case that there are hard constraints on either privacy or utility,
therefore we can maximize one subject to a constraint on the
other. In general, such optimization is over functional spaces,
and a theoretical treatment of the problem is possible by
considering convex privacy metrics like the mutual information
[1] between the true state and an adversary’s estimate of
that state, and by treating obfuscation functions as conditional
probabilities specifying obfuscated data given true data.

When an analytical treatment of the problem is not possible,
or in the presence of rich datasets, we opt to use data-
driven approaches like adversarial learning. Specifically, we
use generative adversarial privacy (GAP) [2], [3] which lever-
ages recent advancements in generative adversarial networks
(GANs) [4]–[6] and allows learning obfuscation/privatization

schemes from the data itself. The framework considers two
players in a minimax game: a privatizer that obfuscates data
to minimize the risk of inference attacks while preserving the
utility of the true data, and an adversary that infers sensitive
information from the obfuscated data.

We study two real-world use cases in the context of wire-
less data. The first is spectrum sharing. The combination of
bandwidth hungry wireless networks such as cellular, Wi-Fi
and the internet of things, and the shortage of unencumbered
spectrum for new services has caused the government to con-
sider sharing underutilized spectrum among incumbent users
and new users. Spectrum Access Systems (SAS) [7] which
maintain databases of spectrum policy and use information,
are opening bands used for military radar for access to new
commercial services [8], [9], however incumbent systems will
retain priority access. The SAS is expected to identify suitable
protections to prevent harmful interference to priority/primary
users (PUs) when granting spectrum access to secondary users
(SUs). This raises privacy concerns [10], as an adversary
may make inference attacks on PU information by passively
observing the sharing system. PU privacy may be preserved
by obfuscating the information reported to the SAS, e.g. radar
locations or by obfuscating the allocations made by the SAS
to SUs, e.g. power assignments to phones, at the expense of
operating the shared system under more severe interference
constraints and thus offering SUs less additional bandwidth.

The second use case is that of (cellular) signal map genera-
tion. Signal maps consist of measurements in various locations
of key performance indicators such as received signal strength
(RSS). Cellular operators rely on signal maps to understand
the performance and coverage of their own network and their
competitors. Although cellular providers can collect measure-
ments on the network edge themselves, due to cost and liability
they increasingly choose to outsource the collection to third-
party mobile analytics companies, such as OpenSignal [11],
RootMetrics [12], Tutela [13] and others. These companies
crowdsource measurements directly from user devices, via
standalone mobile apps [11], or measurement software devel-
opment kits [13] integrated into popular partnering apps. While
these measurements are assumed to be sparse in space and
time and over thousands of users, previous work has shown
that the identities are easily inferable from location data [14].
User privacy may be preserved by obfuscating the datasets
prior to release, at the expense of generating less accurate



signal maps.
In the next section we briefly discuss the state-of-the-art

in privacy, especially as it relates to spectrum allocation and
signal map generation. Section III describes the optimization
and learning methodologies in detail. Section IV applies the
two methodologies to the two use cases under consideration.
The formal treatment of the privacy-utility problem in the
context of spectrum sharing yields an optimal strategy and a
practical heuristic which samples the state space and generates
an allocation and reporting codebook for the PUs and SAS
which achieves an almost optimal trade-off between privacy
and utility. Applying GAP to cellular signal strength traces, we
train a privatizer which manages to achieve significantly better
levels of privacy without a loss of utility with respect to signal
map generation, relative to standard obfuscation approaches.
Section V concludes this work and discusses future research
directions.

II. RELATED WORK

Differential privacy (DP) [15]–[19] is studied under the
local or global models of privacy. The global model assumes
that a trust service provider has acquired a dataset and wants
to release queries computed on it in a privacy-preserving
fashions. The local model assumes that users do not have
trust in anyone (including a service provider they may be
communicating with) and want to randomize their data before
sharing it. Our work is closely related to the local model
of DP. However, local DP assumes a worst case adversarial
threat model and a worst case distribution on the data when
quantifying information leakage. Thus, it often leads to a
significant reduction in utility [20]–[25].

One way around the utility limitations of local DP is the
collection of data using cryptographic secure aggregation, a
secure multi-party computation protocol that allows the service
provider to only see aggregated data [26], [27]. This approach,
though appealing for a variety of applications, has several
restrictions. First, it requires user-to-user communication be-
cause users have to share random noise sequences that are
used to mask their data. This causes a significant increase in
communication cost. Second, such schemes are often complex
to implement on-devices and lead to increase computational
complexity. Finally, this approach limits restricts the service
provider to learning algorithms that requires sums of data.
Therefore, to overcome these limitations, we focus on ran-
domization schemes that satisfy information theoretic notions
of privacy.

Several works consider SU privacy [28]–[30] and assume
that SU requests can be aggregated to preserve privacy, where
reliance on anonymization precludes general applicability. [31]
applies a secure computation technique to maintain SU pri-
vacy, but does not allow for spatial reuse of spectrum by SUs,
severely limiting the potential efficiency of a SAS in practice.
PU privacy with a SAS is considered in [32], [33], where
strategies for granting SU resource assignments to protect PU
privacy are considered. The privacy of both PUs and SUs
is considered in [34], where the proposed encryption method

along with introduction of a fourth party “key distributor” per-
forms a subset of the SAS operations to keep user information
private from the SAS. Various perturbation strategies such as
adding false PU entries or randomly reducing SU transmit
power allocations are studied in [35], [36], [37].

Previous work on privacy in map generation has considered
strategic sampling, distribution modeling, and noise addition as
obfuscation strategies. In [38], the authors exploit compressive
sensing techniques to sample and compress RSS values along
road segments, and define a privacy metric which is a function
of the topology of a graph connecting reported road segments,
which can be used to recover users’ traces. The authors of [39]
provide a formal privacy analysis for synthetic data generation,
where a statistical model of the true data is built and subse-
quently sampled and apply this technique to the problem of
mapping user’s daily commutes. In [40], distributed algorithms
for Gaussian and exponential noise addition are explored as
an alternative to a trusted privatizing centralized server. To the
best of our knowledge, this work is the first to apply generative
adversarial privacy in the context of map generation.

III. METHODOLOGIES

A. Optimization: Information Theoretic Approach

To establish a general, rigorous framework for analyzing
the privacy-utility tradeoff in mobile measurement settings,
we consider a system of m networked users, e.g. handheld
users in the context of signal maps or primary and secondary
users in the context of spectrum sharing. n functions take as
input user and other data or metadata (e.g. model parameters)
and provide some utility to the users and the system but
also potentially expose user privacy. Functions can be user
specific, e.g. obfuscation functions for user data, or system
wide residing at a central entity, e.g. functions computing
power assignments in the context of spectrum sharing, and
functions estimating signal maps. The general problem is how
to design these functions to practically achieve a near-optimal
privacy-utility tradeoff.

The general framework is illustrated in Figure 1a, and
specific applications of the framework to our signal map and
spectrum sharing examples are illustrated in Figures 1b and 1c
respectively. Consider signal maps where users are asked to
report signal coverage measurements including their location
at the time of the measurement. To mitigate concerns about
their privacy, users may obfuscate their reported measure-
ments, at the expense of the utility of the signal map estimate.
Consider spectrum sharing, where PUs and SUs (users) share
the spectrum via a spectrum sharing system. PUs, e.g., military
radar, will report their state to the system to receive protection
from interference. The system will use this to grant spectrum
access to SUs, e.g., cellular networks. PUs may obfuscate the
information they report at the expense of SU utility.

Let X ∈ X be the set describing the relevant state of
all m users, e.g. current signal strength measurements or
user data to be shared, where X is the state space. Let
gi ∈ Gi, i ∈ {1, ..., n} denote n functions implemented in the
system, e.g. obfuscation functions, where G = G1 × ...×Gn
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Fig. 1: Examples of Privacy System Models.

is the set of all feasible implementations. Let Y ∈ Y be the
set of outputs produced by all functions, e.g. obfuscated user
data, where Y describes the space of all possible outputs. In
general, each function will map some observable subset of
the state space, which may include outputs of other functions,
to some output. Thus, by letting Xi ⊆ X ∪ Y denote the
input for the ith function and Yi ⊆ Y denote the output
of that function, we have Yi = gi(Xi). Examples of user
functions include obfuscating signal strength measurements
or PUs locations, and examples of system wide functions
include functions to create the signal map estimate or to make
spectrum assignments to SUs.

To measure privacy, we consider an adversary that seeks to
learn about the true state of one or more of the users without
disrupting the system. The adversary will passively observe the
outputs produced by the functions, and use these observations
to make an inference attack on the true state space. For
example, in the spectrum sharing problem, an adversary may
observe the assignments made to the SUs and attempt to infer
the location of the operational PUs. Treating the true state
space as a random variable, the adversary will compute an
estimated conditional probability distribution PX|Y .

The effectiveness of an adversary’s inference attack can
be taken as a measure of the users’ privacy. Mutual in-
formation [41] offers strong privacy guarantees in an av-
erage sense. Specifically, mutual information is defined as:
I(X ,Y) =

∑
y∈Y

∑
x∈X PX ,Y(x, y) log

(
PX ,Y(x,y)
PX (x)PY(y)

)
, and

it measures the dependence of two random variables. Larger
mutual information implies a greater potential for an adversary
to estimate the state X from observations Y . Since mutual
information may allow us to formulate and study problems in
an analytically tractable fashion, we will use it to provide a
formal optimization framework which identifies the (obfusca-
tion) functions which maximize privacy subject to a minimum
utility constraint.

In theory, the optimal adversary estimate can be computed
as the solution to a standard Bayesian inference problem. In
practice, the size of the candidate space is likely to be too
large to allow for this. The adversary could potentially solve
for the maximum likelihood estimate, but in general we will
not have a closed form to facilitate finding the maximum.
Instead, we consider approximate techniques to model an
adversary estimate. We employ machine learning classification
and regression techniques, as they tend to be very effective in
reverse engineering a system. Following common practice, we

generate a set of labeled training data {y, x} pairs, representing
adversary observations and the underlying true state, then fit a
model to this training data that can be used to predict x from
new observations y. We specifically consider support vector
machines (SVM), logistic regression, decision trees and deep
learning neural networks [42].

The competing goals of user privacy and utility frame the
design of obfuscation functions as a multi-objective optimiza-
tion problem. One may treat utility as the objective function
and account for privacy as a constraint or do the opposite.
Since it is more intuitive to define thresholds for user utility
than for privacy in the contexts we explore, we treat user
utility as a constraint on the optimization of user privacy,
where thresholds on the utility may be parametrically varied
to explore the privacy-utility tradeoff. Let φ(Y,X ) be the
function that returns some metric quantifying user privacy. We
formally state this privacy optimization problem as

max
g1,...,gn∈G

φ (Y,X ) (1a)

subject to U1(Y,X ) ≥ u1, ..., Uk(Y,X ) ≥ uk (1b)
Y1 = g1(X1), ...,Yn = gn(Xn) (1c)
X ∈ X,Y ∈ Y,Xi ⊆ X ∪ Y,Yi ⊆ Y, (1d)

where Ui, i ∈ {1, ..., k} denotes utility functions for the system
and k will depend on the application setting. In spectrum
sharing, PUs and SUs each have their own utility, i.e., k = m,
and we will specifically examine the case of one PU network
and one SU network, i.e., where k = 2. The utility of the PUs
will depend on the likelihood of experiencing interference,
while the utility of the SUs will depend on the amount of
spectrum they are permitted to access. For signal maps, we
will assume a single utility for the quality of the resulting
map, i.e., k = 1 .

In spectrum sharing, PUs will have a function to report their
requirements for interference protection and share (obfuscated)
PU locations, SUs have a function to request access to the
spectrum, and the sharing system has a function to grant SU
access by assigning allowable transmission power levels. We
will examine a case where the access system is assumed to
be trusted and SUs are assumed to be truthful such that a
single function for the access system to make assignments
to SUs will be optimized to trade utility and privacy, i.e.,
n = 1. In signal maps, we will consider the optimization
of a collaborative user privatization function and a function
to generate the signal map from the privatized user data, i.e.,



n = 2. Given that the optimization is over functional spaces,
solving Problem (1) may not be tractable. Regardless, this
provides a general framework that can be applied to rigorous
comparison of heuristics in specific problem settings without
further limitations or assumptions.

Suppose the state spaces X and Y are discrete and finite. In
this case, gi can be modeled as PYi|Xi

(y|x), i.e., the probabil-
ity that the output y is returned given that the observation is x,
where y ∈ Y, x ∈ X. To simplify exposition we can combine
the conditional probabilities corresponding to each function
into a single conditional probability for the observation of
an adversary given the true state space, i.e., PY|X . In the
spectrum sharing setting, Y contains the power assignments
to SU cellular customers observed by the adversary while X
contains the user states, e.g. PU (radar) locations. In most
practical settings, it will be intractable to write down these
probability distributions explicitly owing to the large number
of possible states, but we can theoretically map (1) to an
equivalent problem:

max
PY|X

φ (Y,X ) (2a)

subject to
∑
x∈X

∑
y∈Y

PY|X (y|x)U1(x, y) ≥ u1,

...,
∑
x∈X

∑
y∈Y

PY|X (y|x)Uk(x, y) ≥ uk (2b)

PY|X (y|x) ≥ 0,∀y ∈ Y, x ∈ X, (2c)∑
y∈Y

PY|X (y|x) = 1,∀x ∈ X, PY|X ∈ Pc. (2d)

Here, the constraints in (2b) correspond to the constraints
in (1b), where we have made the assumption that for some
practical settings, given a specific realization x ∈ X and
y ∈ Y , we can pre-compute the utility Ui(x, y), which can
be treated as a constant parameterizing the optimization. For
example, in spectrum sharing, given a user state x and a set
of SU assignments y, we can directly compute the SU utility
as the sum rate of cellular customers of the SUs. (2d) simply
ensures that PY|X yields a valid probability distribution. We
also include PY|X ∈ Pc to allow for other general constraints
on the randomized operation, such as causality of the individ-
ual functions, which we assume can be described by a convex
set Pc.

Since all of the constraints in Problem (2) are convex, if the
privacy cost metric φ(Y,X ) is convex with respect to PY|X ,
e.g. mutual information [43], Problem (2) is convex, and we
can derive conditions on the optimal (obfuscation) functions.
In practical cases, such optimal conditions may not be directly
applied in practice, but we can use the derived conditions to
inform the development of more practical strategies suited to
the specific application. In cases where computing utilities may
be impractical, the most appropriate privacy metrics may be
non-convex, other non-convex constraints may be necessary,
or we may lack the functional relationships needed to write
down Problem (1) in the first place, and will instead rely on
data traces and data-driven obfuscation techniques.

B. Learning: Data-Driven Approach

Leveraging recent advancements in generative adversarial
networks (GANs) [4]–[6], our generative adversarial privacy
(GAP) system learns how to discern private features from
the dataset, and then how to cleverly obfuscate the data such
that these private features are difficult to discern [2]. Like
traditional GANs, which learn to create synthetic data that
could pass as real data by positioning a generative model
and a discriminative model against each other and training
each until the generator is sufficiently good at tricking the
discriminator, our GAP system positions a privatizer and an
adversary against each other and trains each until the privatizer
is sufficiently good at tricking the adversary. In either case,
“sufficiently good” is reached when any change in the model
parameters does not result in better performance, and it has
converged to optimal. Unlike traditional GANs, our privatizer
has has a complex objective wherein it minimizes the success
of our adversary while also minimizing the distortion of our
original dataset.

(a) Generative Adversarial Network (GAN)

(b) Generative Adversarial Privacy (GAP)

Fig. 2: GAN and GAP

1) GAP Theoretical Model: Consider a dataset D which
consists of random variables denoted by (X ,Z) where X ∈ X
represents the public user state and Z ∈ Z represents the
private user state. Each (Xi,Zi) pair corresponding to the
ith entry of D is distributed according to the joint probabil-
ity P (Xi,Zi) and is independent from other entry pairs in
the dataset, meaning our privatizer can perform a mapping
Y = g(X ) on each pair independently, where g represents the
privatization policy. We restrict our privatizer to mappings on
the public variable only, seeing as the private variable would
not be released even after obfuscation due to its sensitive
nature. However a general privatizer could take both X and
Z as input. We denote Ẑ = h(Y) = h(g(X )) to be the
adversary’s estimate of private variable Z , where h represents
the adversary’s estimation policy.

We define the adversary’s loss function to be l(h(g(X =
x),Z = z), where x and z are instances of sets X and Z .
This loss function captures how well the adversary estimates
Ẑ from Y and depends on both g and h. The expected loss
of the adversary is

La(g, h) = E[l(h(g(X )),Z)] (3)



where the expectation is taken over the joint probability
distribution P (X ,Z).

We define the privatizer’s loss to be −l(h(g(X = x)),Z =
z) + ρ ∗ d(g(X = x),X = x) where l is the adversary’s loss,
d captures the distortion, or loss in utility, between Y and X ,
and ρ is a parameter quantifying the relative importance of
minimizing loss in utility versus maximizing privacy. Given
that privacy and utility are opposing metrics, ρ may be para-
metrically varied to explore the privacy-utility trade, analogous
to the distortion threshold under the theoretical treatment. The
total expected loss of the privatizer is

Lp(g, h) = E[−l(h(g(X )),Z) + ρ ∗ d(g(X ),X )]
= −La(g, h) + E[ρ ∗ d(g(X ),X )]

(4)

where the expectation is similarly taken over P (X ,Z).
Equations (3) and (4) lead to the following minimax game

between the privatizer and adversary

min
g

max
h

Lp(g, h) (5)

2) GAP Data-Driven Model: With complete knowledge of
P (X ,Z), we can derive h and g directly, however without
knowledge of P (X ,Z) we must take an iterative approach
to converge on the optimal h and g for the above minimax
game, which will depend on the dataset. Analagous to GAN,
we restrict g and h to be modeled as multi-layer neural
networks - the privatizer and adversary. The privatizer g(X ; θp)
is characterized by its weights θp. The adversary h(Y; θa)
is characterized by its weights θa. For the dataset D =
{(xi, zi)}ni=1, equations 3-5 become the following empirical
loss functions

La(θp, θa) =
1

n

n∑
i=1

l(h(g(xi; θp); θa), zi) (6)

Lp(θp, θa) =
1

n

n∑
i=1

[−l(h(g(xi; θp); θa), zi)

+ρ ∗ (d(g(xi; θp), xi)))]
(7)

min
g

max
h

Lp(θp, θa) (8)

Our iterative approach involves fixing the weights θp and
perturbing the weights θa along the negative gradient of La
until convergence. At this point we have found the worst
case adversary for this instantiation of the privatizer. We then
perturb the weights θp along the negative gradient of Lp,
repeatedly retraining θa until convergence at each iterative
step. When Lp converges, we have found the equilibrium of
our minimax game and the weights which characterize h, our
data-driven privatization policy.

It is shown in [2] that GAP can recover mutual information
privacy for a log-loss adversary loss, and therefore presents a
reasonable alternative to the information-theoretic approach.
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Fig. 3: Topology and Adversary Estimates.

IV. APPLICATIONS

A. Spectrum Sharing

A spectrum access system (SAS) collects location and
channel information from the SU and PU networks and then
assigns spectrum to the SUs. Denote the reported PU and
SU parameters with YPU and YSU respectively, the SAS
assignments to the SUs with YSAS , and the true state of the PU
with XPU . The SAS makes assignments to the SUs according
to YSAS = gSAS(YPU ,YSU ). We consider the special case
of a SAS that is trusted and an adversary that observes YSAS ,
i.e., the adversary can hack the SU network, or operate its own
SU devices legitimately, and infer the PU state from the SU
assignments. The design of the function gSAS is an instance
of the privacy-utility problem.

To simulate an adversary inference attack, consider 4 PU
radars in a 20 km by 20 km area, where SU base stations
(BSs) provide service to nearby user equipment (UE). Fig. 3
provides a visualization of an optimal adversary estimate for
each location based on selection of gSAS to maximize utility
without consideration for privacy. Fig. 3b shows the estimate
after just a single observed time slot (single assignment to all
SU transmitters). The adversary is able to immediately identify
all 4 locations, with some uncertainty about a fifth location.

We analyze the spectrum sharing privacy problem using
the framework given by Problem (2) where the applicable
utility functions are the probability of harmful interference
to the PUs, and the achievable data rates with the spectrum
granted to the SUs. X is the state (e.g. location) of all PUs,
and Y contains the observed power assignments granted by
the system to the SUs at known locations. Applying mutual
information as a privacy metric, we can define the privacy
optimization problem as

min
PY|X

I (Y;X ) =
∑
y∈Y

∑
x∈X

PX ,Y(x, y) log

(
PX ,Y(x, y)

PX (x)PY(y)

)
,

(9)
s.t.
∑
y∈Y

PY(y)USU (y) ≥ uSU ,

∑
y∈Y

PY|X (y|x)UPU (x, y) ≤ uPU ,∀x ∈ X



PY|X (y|x) ≥ 0,∀y ∈ Y, x ∈ X,
∑
y∈Y

PY|X (y|x) = 1,∀x ∈ X,

where the SU utility for a given realization is denoted USU (y),
the threshold on SU utility is uSU , the upper limit on
the probability of interference is uPU , and UPU (x, y) is
the probability of interference. Note that since less mutual
information means more privacy we minimize rather than
maximize it. This is a convex formulation and we can derive
conditions on the optimal solution using standard Lagrange
multiplier techniques and a little algebra. The first-order opti-
mality condition yields P ∗Y|X (y|x) = P ∗Y(y) exp(µ

∗
uUSU (y)−

UPU (x, y)µ
∗
x/PX (x))/NC where NC is a normalization con-

stant and µ∗u, µ
∗
x are Lagrange multipliers. We may interpret

each term in the numerator as follows: (i) the probability that
y is reported, PY|X (y|x), should exponentially increase with
USU (y), i.e., the SU utility offered, (ii) for a given true PU
state x, the probability that y is reported should exponentially
decrease with UPU (x, y), the probability that reporting this
state will cause harmful interference to the PUs, and (iii) the
probability that y is reported for a given x should linearly
increase with PY (y), the probability that y is reported for all
other states, i.e., we should reuse the same reported states to
the extent practical.

In practice, we may do this by sampling the space of
adversary observations Y and constructing a “codebook” of
possible observations C ⊆ Y. At each time slot, for the given
true PU and SU topologies, we can compute the SU utility
and probability of interference to PUs that would result for
any selected codeword, which we use to weight the codewords
exponentially. We then randomly select a codeword according
to the weights. We will refer to this as the Allocation and
Reporting Codebook (ARC) method. Algorithm 1 provides
pseudocode for ARC. To compute the codeword weights, we
first recognize that the multiplier µu corresponds to the SU
utility constraint and thus can be viewed as a design parameter
for trading between SU utility and PU privacy. Codebook size
is also a design parameter which potentially offers improved
performance at the cost of complexity. We also observe that
µx corresponds to the harmful interference constraint. We can
solve for the µx that ensures the constraint is satisfied. To
construct the codebook, we assume that there is at least one
allocation that will not result in harmful interference, e.g.,
when no assignments are granted to SUs. When SU utility,
USU , and interference, UPU , can be computed in polynomial
time, which is the case for sum-rate utility and the probabilistic
channel uncertainty models we will consider, ARC runs in
polynomial time with respect to the size of the codebook, s,
and the number of PUs and SUs, offering a generally efficient
solution that can be applied to large problems.

Consider a small scale spectrum sharing scenario with 4
PU locations and 2 SUs operating in a 10x10 km region,
where we can enumerate all potential PU states and adversary
observations. This allows for computing the optimal privacy
strategy and assessing how close to the optimal other practical
strategies perform. Let SU utility be the sum-rate throughput,

Input: µu, Codebook Size = s
Output: Codebook {yi, i ∈ {1, ..., s}}

1: for i=1:s-1 do
2: Randomly generate yi ∈ Y and compute USU (yi)
3: end for
4: for True PU state x ∈ X at each time slot do
5: ys ∈ Y such that UPU (x, ys) ≤ uPU
6: Compute UPU (x, yi) for i ∈ {1, ..., s}
7: Find µx such that

∑s
i=1 wiUPU (x, yi) ≤ uPU ,

wi =
exp(µuUSU (yi)−UPU (x,yi)µx)∑s

j=1 exp(µuUSU (yj)−UPU (x,yj)µx)

8: Randomly sample ir from i ∈ {1, ..., s} according to
weights wi

9: return yir
10: end for

Algorithm 1: Allocation and Reporting Codebook (ARC)
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Fig. 4: Privacy-Utility Tradeoffs in Spectrum Sharing

computed as the sum Shannon capacity of all SU assignments.
We implement the optimal privacy strategy for minimizing
mutual information by applying a convex solver to (9), pre-
computing parameters USU (y) and UPU (x, y) for every pos-
sible PU state and SU allocation.

We can quantitatively compare the privacy-utility tradeoff
of the optimal approach with heuristic obfuscation strategies,
which we plot in Figure 4. Recall that zero mutual information
corresponds to maximum privacy, such that operating in the
top left corner of the plot is ideal. The optimal strategies are
plotted parametrically for different values of the required SU
utility, uSU . ARC is plotted with three different codebook
sizes, 4, 8 and 16, and for each codebook size, is plotted
parametrically for different values of µu. For the perturbation
strategies, we consider the approach of adding either 0, 1 or 2
false PU entries to randomly select a reported state from the
true state. Note an interpolation line is included in the figures
for visualization, but only the operating points with markers



are achievable for this strategy. We also plot strategies where
false alarms and missed detections are applied to each possible
PU location in the state. We separately plot missed detection
rates of 0, 0.1% and 0.5%, and for each missed detection rate,
we parametrically plot false alarm rates from 0 to 30%.

As the codebook size increases, ARC offers an increasingly
close approximation of the optimal privacy strategy, with µu
offering an effective way to trade between SU utility and PU
privacy. The false entry strategy rapidly degrades SU utility
as additional false entries are included. The missed detections
and false alarms offer a somewhat better tradeoff than the false
entries. Both are significantly outperformed by the optimal
and ARC, even with the smallest codebook size. Note that
the top right marker for the false PU strategy corresponds
to no obfuscation, i.e., the utility maximizing strategy. By
comparison, ARC can offer a nearly 50% improvement in
privacy with negligible reduction of SU utility.

This substantial improvement over existing privacy strate-
gies provides clear evidence of the benefit of designing privacy
strategies based on derived conditions on the optimal solution.
The data-driven GAP approach to privacy could also be
applied to the spectrum sharing setting, with the SU and PU
utility functions used in a weighted objective function to train
a privatizer against an adversary trained to explicitly estimate
private PU information. For brevity, and considering we lack
a real spectrum sharing data set to implement a meaningful
data-driven approach, we defer applying GAP to the spectrum
sharing setting. Instead we will study the effectiveness of GAP
in the next subsection.

B. Signal Maps

We demonstrate generative adversarial privacy in the context
of signal map creation. Our dataset contains mobile data from
five users over 10 days in April, 2013 in a geographically
contained region in Chania, Greece [44]. We limit our concern
to five features, detailed in Table I. This dataset, representative
of what third-party data collection companies such as Tutela
might collect, would then be sold or publicly released. If
released without obfuscation, an adversary might be able to
infer sensitive information about the users. For this purpose we
propose strategically obfuscating the data prior to its release.

TABLE I: Dataset Features

Feature Sensitivity Variable
psuedoID private u
timestamp public t

latitude public x
longitude public y

RSS public s

Our objective is to obscure the sensitive correlation between
(t, x, y, s) and (u), without affecting the useful relationship
between (x, y) and (s). We implement our GAP framework
with the two multi-layer neural networks shown in Figure 5
(for clarity, not all connecting weights are shown).

Fig. 5: Privatizer and Adversary Neural Nets

1) Implementation: Our privatizer neural net is fed as input
(t, x, y, s), and outputs obfuscated data (tp, xp, yp, sp). To
avoid overfitting, our privatizer model is kept to two fully
connected layers, with four hidden units. These hyperparam-
eters were experimentally determined to perform well on our
dataset. We use gradient descent optimization with a learning
rate of ηp = 0.005 to ensure perturbations in θp are small
enough to allow adversary convergence.

Our adversary neural net model is fed as input
(tp, xp, yp, sp), and outputs a probability distribution û over
the five possible user psuedoIDs in the set C = {0, 1, 2, 3, 4}.
Our adversary model is kept to two fully connected layers,
with seven hidden units, again experimentally determined
to perform well on our dataset. We use gradient descent
optimization with a learning rate of ηa = 0.01.

Our adversary’s training loss is the cross entropy which
compares the output distribution with the true pseudoID u.
The adversary updates θa according to the loss function

La(θp, θa) = −
1

n

n∑
i=1

∑
c∈C

1ui,c∗log(h(g(ti, xi, yi, si; θp); θa)c)

(10)
where 1ui,c is an indicator function equal to 1 when ui belongs
to class c and 0 otherwise, and h(·)c is the probability of class
c estimated by the adversary.

Our privatizer’s training loss is comprised of two parts (1)
the loss in privacy and (2) the loss in utility. The privacy
component is simply the negative of the adversary’s loss
−La(θp, θa) since better adversary performance implies less
privacy. To define the utility component we first define a
function m(·) which takes as input (x, y, s) points and gives
as output a set of parameters which characterize a mapping
between (x, y) and s. This function represents our signal map.

For this application in which we have prior knowledge
that there is a single base station in the geographic region
represented by our dataset, m(x, y, s) performs ordinary least
squares regression to estimate the parameters of a pathloss
model relating RSS to distance from the base station, where
RSS falls off inversely proportional to distance squared. Equa-
tion 11 states the relationship between distance, r, and RSS,
s, which depends on scaling constants K, c, and s0. Equation



12 define distance as a function of latitude, x, and longitude,
y, given that the base station is located at (a, b).

Kr−2 = cs + s0 (11)

r =
√

(x− a)2 + (y − b)2 (12)

Given that five constants (K, c, s0, a, b) completely character-
ize this relationship, we can define a new vector β of constants
[β1 β2 β3 β4 β5] which when multiplied by D, the n×5 matrix
[1 x x2 y y2] give Dβ = 1

s . We then directly calculate these
constants

β = (DTD)−1D
1

s
(13)

We can now define m(·) and write the pathloss-model
utility component of our privatizer’s loss, lpathloss as the mean
squared error between the parameters fitted on our input data
and the parameters fitted on our input data.

m(x, y, s) = β; m(xp, yp, sp) = βp (14)

lpathloss =
1

5

5∑
i=1

(βi − βpi )
2 (15)

In implementation, this loss causes the privatized data to
converge to points which will describe the same pathloss
model as that described by the input data, however we need
one additional component to restrict the obfuscated data to
the geographic region specified by the input data. This is
done by including another term in the utility loss which
quantifies the mean squared error between the vectors M =
[µx σ

2
x µy σ

2
y µs σ

2
s ] and Mp = [µpx (σpx)

2 µpy (σ
p
y)

2 µps (σ
p
s )

2]
which capture the first and second moments of the input data
and obfuscated data. Now our final privatizer loss is given by

La(θp, θa) = ρU(θp)− La(θp, θa) (16)

U(θp) = max {1
5

5∑
i=1

(βi − βpi )
2,

1

6

6∑
i=1

(Mi −Mp
i )

2} (17)

where U(θp) explicitly defines our utility metric. In simplest
terms, our iterative algorithm is described in Algorithm 2.

Input: dataset D
Output: obfuscated dataset Dp

1: while θp has not converged do
2: Dp ←− g(D; θp)
3: while θa has not converged do
4: û←− h(Dp; θa)
5: θa ←− θa − ηa ∗ ∇θaLa(θp, θa)
6: end while
7: θp ←− θp − ηp ∗ ∇θpLp(θp, θa)
8: end while
9: Dp ←− g(D; θp)

10: return Dp

Algorithm 2: GAP

2) Performance: Figures 6 illustrates the output of our data-
driven GAP privatizer on a sample of 100 data points, with a
utility penalty ρ = 5. It can immediately be seen that while the
input data is in five obviously identifiable clusters indicating
users, the obfuscated data forms line-like clusters along the
apparent gradient in signal strength. This learned privatization
scheme intuitively makes sense, because it is difficult for an
adversary to estimate five users from a line and it is the
simplest shape that can capture the pathloss model which best
fits the input data.

Fig. 6: GAP Obfuscated Data (ρ = 5)

(a) Gaussian-Noise Privatizer σ = 0.7

(b) GAP ρ = 5

Fig. 7: Generated Signal Maps for Privacy=0.64

Figure 7 compares the performance of our data-driven
GAP privatizer with the performance of a standard gaussian
noise-adding privatizer with no knowledge of the dataset
characteristics. For the same level of achieved privacy, there
is clearly more utility in the GAP-obfuscated data as seen by
both rightside maps.

As we vary ρ, we observe changes in the outcome of the
privatizer which correspond to high utility but low privacy
for high values of ρ and high privacy but low utility for low
values of ρ, allowing us to directly outline the privacy-utility
curve (Figure 8). We can observe a similar privacy-utility
curve depending on the standard deviation of the noise of the



gaussian noise-adding privatizer, where low noise-levels result
in high utility but low privacy and high noise-levels result
in high privacy but low utility. However for the same utility
values our GAP privatizer achieves up to a 210% increase in
privacy and for the same privacy values our GAP privatizer
achieves up to a 540% increase in utility. Notably ρ = 0 does
not, as one would expect, result in the best privacy. We suspect
this occurs because of the iterative nature of the algorithm
- including utility causes the privatizer to train for longer,
allowing the adversary to train for longer as well.

Fig. 8: Privacy-Utility Curve and Relative Performance

This significant improvement relative to standard obfus-
cation strategies demonstrates the advantages of learning
data-driven obfuscation strategies. To apply the optimization
methodology discussed in Section III-A to this context, we
could replace our empirical cross-entropy privacy metric with
I(X ,Y), the mutual information between the true data and
obfuscated data. For the same utility metric used in 17,
and considering obfuscation strategies specified by PY|X , we
can minimize the mutual information subject to a minimum
allowable utility as follows

min
PY|X

I (Y;X ) =
∑
y∈Y

∑
x∈X

PX ,Y(x, y) log

(
PX ,Y(x, y)

PX (x)PY(y)

)
,

(18)
s.t.
∑
y∈Y

PY(y)U(y) ≥ uthreshold,∀x ∈ X

This framing of the problem now lends itself to the code-
book approach applied in section IV-A, however for brevity
we do not include the details of this implementation for the
signal maps application.

V. CONCLUSIONS

In this work we have explored the privacy-utility trade in the
context of wireless networks. We have defined context-specific
privacy and utility metrics for the applications of spectrum
sharing and signal map generation, and have used these metrics
to aid in the design of obfuscation schemes which add privacy
without a significant loss in utility. We have demonstrated the
success of our heuristic algorithm based on derived conditions
on the optimal solution and the success of our adversarial
learning framework relative to standard perturbation strate-
gies. In this work we have primarily considered centralized
obfuscation strategies which suit large collections of already
aggregated data. In the future we would like to consider
distributed methods for approaching the privacy-utility trade.
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